Multifractal system







A Strange attractor that exhibits multifractal scaling




Example of a multifractal electronic eigenstate at the Anderson localization transition in a system with 1367631 atoms.


A multifractal system is a generalization of a fractal system in which a single exponent (the fractal dimension) is not enough to describe its dynamics; instead, a continuous spectrum of exponents (the so-called singularity spectrum) is needed.[1]


Multifractal systems are common in nature. They include the length of coastlines, fully developed turbulence, real world scenes, the Sun’s magnetic field time series, heartbeat dynamics, human gait, and natural luminosity time series. Models have been proposed in various contexts ranging from turbulence in fluid dynamics to internet traffic, finance, image modeling, texture synthesis, meteorology, geophysics and more. The origin of multifractality in sequential (time series) data has been attributed to mathematical convergence effects related to the central limit theorem that have as foci of convergence the family of statistical distributions known as the Tweedie exponential dispersion models[2] as well as the geometric Tweedie models.[3] The first convergence effect yields monofractal sequences and the second convergence effect is responsible for variation in the fractal dimension of the monofractal sequences.[4]


Multifractal analysis uses mathematical basis to investigate datasets, often in conjunction with other methods of fractal analysis and lacunarity analysis. The technique entails distorting datasets extracted from patterns to generate multifractal spectra that illustrate how scaling varies over the dataset. Multifractal analysis techniques have been applied in a variety of practical situations such as predicting earthquakes and interpreting medical images.[5][6][7]




Contents






  • 1 Definition


  • 2 Estimation


  • 3 Practical application of multifractal spectra


    • 3.1 DQ vs Q


      • 3.1.1 Dimensional ordering




    • 3.2 f(α){displaystyle f(alpha )}f(alpha ) vs α{displaystyle alpha }alpha


    • 3.3 Generalized dimensions of species abundance distributions in space




  • 4 Estimating multifractal scaling from box counting


  • 5 Applications


  • 6 See also


  • 7 References


  • 8 External links





Definition


In a multifractal system s{displaystyle s}s, the behavior around any point is described by a local power law:


s(x→+a→)−s(x→)∼ah(x→).{displaystyle s({vec {x}}+{vec {a}})-s({vec {x}})sim a^{h({vec {x}})}.}s({vec {x}}+{vec {a}})-s({vec {x}})sim a^{h({vec {x}})}.

The exponent h(x→){displaystyle h({vec {x}})}h({vec {x}}) is called the singularity exponent, as it describes the local degree of singularity or regularity around the point x→{displaystyle {vec {x}}}{vec {x}}.


The ensemble formed by all the points that share the same singularity exponent is called the singularity manifold of exponent h, and is a fractal set of fractal dimension D(h){displaystyle D(h)}D(h): the singularity spectrum. The curve D(h){displaystyle D(h)}D(h) versus h is called the singularity spectrum and fully describes the (statistical) distribution of the variable s{displaystyle s}s.


In practice, the multifractal behaviour of a physical system X{displaystyle X}X is not directly characterized by its singularity spectrum D(h){displaystyle D(h)}D(h). Data analysis rather gives access to the multiscaling exponents ζ(q), q∈R{displaystyle zeta (q), qin {mathbb {R} }}zeta (q), qin {mathbb {R} }. Indeed, multifractal signals generally obey a scale invariance property which yields power law behaviours for multiresolution quantities depending on their scale a{displaystyle a}a. Depending on the object under study, these multiresolution quantities, denoted by TX(a){displaystyle T_{X}(a)}T_{X}(a) in the following, can be local averages in boxes of size a{displaystyle a}a, gradients over distance a{displaystyle a}a, wavelet coefficients at scale a{displaystyle a}a... For multifractal objects, one usually observes a global power law scaling of the form:


TX(a)q⟩(q) {displaystyle langle T_{X}(a)^{q}rangle sim a^{zeta (q)} }langle T_{X}(a)^{q}rangle sim a^{zeta (q)}

at least in some range of scales and for some range of orders q{displaystyle q}q. When such a behaviour is observed, one talks of scale invariance, self-similarity or multiscaling.[8]



Estimation


Using the so-called multifractal formalism, it can be shown that, under some well-suited assumptions, there exists a correspondence between the singularity spectrum D(h){displaystyle D(h)}D(h) and the multiscaling exponents ζ(q){displaystyle zeta (q)}zeta (q) through a Legendre transform. While the determination of D(h){displaystyle D(h)}D(h) calls for some exhaustive local analysis of the data, which would result in difficult and numerically unstable calculations, the estimation of the ζ(q){displaystyle zeta (q)}zeta (q) relies on the use of statistical averages and linear regressions in log-log diagrams. Once the ζ(q){displaystyle zeta (q)}zeta (q) are known, one can deduce an estimate of D(h){displaystyle D(h)}D(h) thanks to a simple Legendre transform.


Multifractal systems are often modeled by stochastic processes such as multiplicative cascades. The ζ(q){displaystyle zeta (q)}zeta (q) receives some statistical interpretation as they characterize the evolution of the distributions of the TX(a){displaystyle T_{X}(a)}T_{X}(a) as a{displaystyle a}a goes from larger to smaller scales. This evolution is often called statistical intermittency and betrays a departure from Gaussian models.


Modelling as a multiplicative cascade also leads to estimation of multifractal properties (Roberts & Cronin 1996). This methods works reasonably well even for relatively small datasets A maximum likelihood fit of a multiplicative cascade to the dataset not only estimates the complete spectrum, but also gives reasonable estimates of the errors (see the web service [1]).





Practical application of multifractal spectra




Multifractal analysis is analogous to viewing a dataset through a series of distorting lenses to home in on differences in scaling. The pattern shown is a Hénon map


Multifractal analysis has been used in several science fields to characterize various types of datasets.[9][10] In essence, multifractal analysis applies a distorting factor to datasets extracted from patterns, to compare how the data behave at each distortion. This is done using graphs known as multifractal spectra, analogous to viewing the dataset through a "distorting lens" as shown in the illustration.[11] Several types of multifractal spectra are used in practise.



DQ vs Q





DQ vs Q spectra for a non-fractal circle (empirical box counting dimension = 1.0), mono-fractal Quadric Cross (empirical box counting dimension = 1.49), and multifractal Hénon map (empirical box counting dimension = 1.29).


One practical multifractal spectrum is the graph of DQ vs Q, where DQ is the generalized dimension for a dataset and Q is an arbitrary set of exponents. The expression generalized dimension thus refers to a set of dimensions for a dataset (detailed calculations for determining the generalized dimension using box counting are described below).



Dimensional ordering


The general pattern of the graph of DQ vs Q can be used to assess the scaling in a pattern. The graph is generally decreasing, sigmoidal around Q=0, where D(Q=0) ≥ D(Q=1) ≥ D(Q=2). As illustrated in the figure, variation in this graphical spectrum can help distinguish patterns. The image shows D(Q) spectra from a multifractal analysis of binary images of non-, mono-, and multi-fractal sets. As is the case in the sample images, non- and mono-fractals tend to have flatter D(Q) spectra than multifractals.


The generalized dimension also offers some important specific information. D(Q=0) is equal to the capacity dimension, which in the analysis shown in the figures here is the box counting dimension. D(Q=1) is equal to the information dimension, and D(Q=2) to the correlation dimension. This relates to the "multi" in multifractal whereby multifractals have multiple dimensions in the D(Q) vs Q spectra but monofractals stay rather flat in that area.[11][12]



f(α){displaystyle f(alpha )}f(alpha ) vs α{displaystyle alpha }alpha


Another useful multifractal spectrum is the graph of f(α){displaystyle f(alpha )}f(alpha ) vs α{displaystyle alpha }alpha (see calculations). These graphs generally rise to a maximum that approximates the fractal dimension at Q=0, and then fall. Like DQ vs Q spectra, they also show typical patterns useful for comparing non-, mono-, and multi-fractal patterns. In particular, for these spectra, non- and mono-fractals converge on certain values, whereas the spectra from multifractal patterns are typically humped over a broader extent.



Generalized dimensions of species abundance distributions in space


One application of Dq vs q in ecology is the characterization of the abundance distribution of species. Traditionally the relative species abundances is calculated for an area without taking into account the positions of the individuals. An equivalent representation of relative species abundances are species ranks, used to generate a surface called the species-rank surface,[13] which can be analyzed using generalized dimensions to detect different ecological mechanisms like the ones observed in neutral theory of biodiversity, metacommunity dynamics or niche theory.[13][14]



Estimating multifractal scaling from box counting



Multifractal spectra can be determined from box counting on digital images. First, a box counting scan is done to determine how the pixels are distributed; then, this "mass distribution" becomes the basis for a series of calculations.[11][12][15] The chief idea is that for multifractals, the probability P{displaystyle P}P of a number of pixels m{displaystyle m}m, appearing in a box i{displaystyle i}i, varies as box size ϵ{displaystyle epsilon }epsilon , to some exponent α{displaystyle alpha }alpha , which changes over the image, as in Eq.0.0. NB: For monofractals, in contrast, the exponent does not change meaningfully over the set. P{displaystyle P}P is calculated from the box counting pixel distribution as in Eq.2.0.








P[i,ϵ]∝ϵαi∴αi∝log⁡P[i,ϵ]log⁡ϵ1{displaystyle P_{[i,epsilon ]}varpropto epsilon ^{-alpha _{i}}therefore alpha _{i}varpropto {frac {log {P_{[i,epsilon ]}}}{log {epsilon ^{-1}}}}}P_{[i,epsilon ]}varpropto epsilon ^{-alpha _{i}}therefore alpha _{i}varpropto {frac {log {P_{[i,epsilon ]}}}{log {epsilon ^{-1}}}}












 



 



 



 





(Eq.0.0)





ϵ{displaystyle epsilon }epsilon = an arbitrary scale (box size in box counting) at which the set is examined


i{displaystyle i}i = the index for each box laid over the set for an ϵ{displaystyle epsilon }epsilon


m[i,ϵ]{displaystyle m_{[i,epsilon ]}}m_{[i,epsilon ]} = the number of pixels or mass in any box, i{displaystyle i}i, at size ϵ{displaystyle epsilon }epsilon


{displaystyle N_{epsilon }}N_{epsilon } = the total boxes that contained more than 0 pixels, for each ϵ{displaystyle epsilon }epsilon







=∑i=1Nϵm[i,ϵ]={displaystyle M_{epsilon }=sum _{i=1}^{N_{epsilon }}m_{[i,epsilon ]}=}M_{epsilon }=sum _{i=1}^{N_{epsilon }}m_{[i,epsilon ]}= the total mass or sum of pixels in all boxes for this ϵ{displaystyle epsilon }epsilon












 



 



 



 





(Eq.1.0)










P[i,ϵ]=m[i,ϵ]Mϵ={displaystyle P_{[i,epsilon ]}={frac {m_{[i,epsilon ]}}{M_{epsilon }}}=}P_{[i,epsilon ]}={frac {m_{[i,epsilon ]}}{M_{epsilon }}}= the probability of this mass at i{displaystyle i}i relative to the total mass for a box size












 



 



 



 





(Eq.2.0)




P{displaystyle P}P is used to observe how the pixel distribution behaves when distorted in certain ways as in Eq.3.0 and Eq.3.1:



Q{displaystyle Q}Q = an arbitrary range of values to use as exponents for distorting the data set







I(Q)[ϵ]=∑i=1NϵP[i,ϵ]Q={displaystyle I_{{(Q)}_{[epsilon ]}}=sum _{i=1}^{N_{epsilon }}{P_{[i,epsilon ]}^{Q}}=}I_{{(Q)}_{[epsilon ]}}=sum _{i=1}^{N_{epsilon }}{P_{[i,epsilon ]}^{Q}}= the sum of all mass probabilities distorted by being raised to this Q, for this box size












 



 



 



 





(Eq.3.0)




  • When Q=1{displaystyle Q=1}Q=1, Eq.3.0 equals 1, the usual sum of all probabilities, and when Q=0{displaystyle Q=0}Q=0, every term is equal to 1, so the sum is equal to the number of boxes counted, {displaystyle N_{epsilon }}N_{epsilon }.







μ(Q)[i,ϵ]=P[i,ϵ]QI(Q)[ϵ]={displaystyle mu _{{(Q)}_{[i,epsilon ]}}={frac {P_{[i,epsilon ]}^{Q}}{I_{{(Q)}_{[epsilon ]}}}}=}mu _{{(Q)}_{[i,epsilon ]}}={frac {P_{[i,epsilon ]}^{Q}}{I_{{(Q)}_{[epsilon ]}}}}= how the distorted mass probability at a box compares to the distorted sum over all boxes at this box size












 



 



 



 





(Eq.3.1)




These distorting equations are further used to address how the set behaves when scaled or resolved or cut up into a series of ϵ{displaystyle epsilon }epsilon -sized pieces and distorted by Q, to find different values for the dimension of the set, as in the following:


  • An important feature of Eq.3.0 is that it can also be seen to vary according to scale raised to the exponent τ{displaystyle tau }tau in Eq.4.0:







I(Q)[ϵ]∝ϵτ(Q){displaystyle I_{{(Q)}_{[epsilon ]}}varpropto epsilon ^{tau _{(Q)}}}I_{{(Q)}_{[epsilon ]}}varpropto epsilon ^{tau _{(Q)}}












 



 



 



 





(Eq.4.0)




Thus, a series of values for τ(Q){displaystyle tau _{(Q)}}tau _{(Q)} can be found from the slopes of the regression line for the log of Eq.3.0 versus the log of ϵ{displaystyle epsilon }epsilon for each Q{displaystyle Q}Q, based on Eq.4.1:








τ(Q)=limϵ0[log⁡I(Q)[ϵ]log⁡ϵ]{displaystyle tau _{(Q)}={lim _{epsilon to 0}{left[{frac {log {I_{{(Q)}_{[epsilon ]}}}}{log {epsilon }}}right]}}}tau _{(Q)}={lim _{epsilon to 0}{left[{frac {log {I_{{(Q)}_{[epsilon ]}}}}{log {epsilon }}}right]}}












 



 



 



 





(Eq.4.1)





  • For the generalized dimension:







D(Q)=limϵ0[log⁡I(Q)[ϵ]log⁡ϵ1](1−Q)−1{displaystyle D_{(Q)}={lim _{epsilon to 0}{left[{frac {log {I_{{(Q)}_{[epsilon ]}}}}{log {epsilon ^{-1}}}}right]}}{(1-Q)^{-1}}}D_{(Q)}={lim _{epsilon to 0}{left[{frac {log {I_{{(Q)}_{[epsilon ]}}}}{log {epsilon ^{-1}}}}right]}}{(1-Q)^{-1}}












 



 



 



 





(Eq.5.0)










D(Q)=τ(Q)Q−1{displaystyle D_{(Q)}={frac {tau _{(Q)}}{Q-1}}}D_{(Q)}={frac {tau _{(Q)}}{Q-1}}












 



 



 



 





(Eq.5.1)










τ(Q)=D(Q)(Q−1){displaystyle tau _{{(Q)}_{}}=D_{(Q)}left(Q-1right)}tau _{{(Q)}_{}}=D_{(Q)}left(Q-1right)












 



 



 



 





(Eq.5.2)










τ(Q)=α(Q)Q−f(α(Q)){displaystyle tau _{(Q)}=alpha _{(Q)}Q-f_{left(alpha _{(Q)}right)}}tau _{(Q)}=alpha _{(Q)}Q-f_{left(alpha _{(Q)}right)}












 



 



 



 





(Eq.5.3)





  • α(Q){displaystyle alpha _{(Q)}}alpha _{(Q)} is estimated as the slope of the regression line for log Aϵ{displaystyle epsilon }epsilon ,Q versus log ϵ{displaystyle epsilon }epsilon where:







,Q=∑i=1Nϵμi,ϵQPi,ϵQ{displaystyle A_{epsilon ,Q}=sum _{i=1}^{N_{epsilon }}{mu _{{i,epsilon }_{Q}}{P_{{i,epsilon }_{Q}}}}}A_{epsilon ,Q}=sum _{i=1}^{N_{epsilon }}{mu _{{i,epsilon }_{Q}}{P_{{i,epsilon }_{Q}}}}












 



 



 



 





(Eq.6.0)




  • Then f(α(Q)){displaystyle f_{left(alpha _{(Q)}right)}}f_{left(alpha _{(Q)}right)} is found from Eq.5.3.

  • The mean τ(Q){displaystyle tau _{(Q)}}tau _{(Q)} is estimated as the slope of the log-log regression line for τ(Q)[ϵ]{displaystyle tau _{{(Q)}_{[epsilon ]}}}tau _{{(Q)}_{[epsilon ]}} versus ϵ{displaystyle epsilon }epsilon , where:







τ(Q)[ϵ]=∑i=1NϵP[i,ϵ]Q−1Nϵ{displaystyle tau _{(Q)_{[epsilon ]}}={frac {sum _{i=1}^{N_{epsilon }}{P_{[i,epsilon ]}^{Q-1}}}{N_{epsilon }}}}tau _{(Q)_{[epsilon ]}}={frac {sum _{i=1}^{N_{epsilon }}{P_{[i,epsilon ]}^{Q-1}}}{N_{epsilon }}}












 



 



 



 





(Eq.6.1)




In practice, the probability distribution depends on how the dataset is sampled, so optimizing algorithms have been developed to ensure adequate sampling.[11]



Applications


Multifractal analysis has been successfully used in many fields including biology and physical sciences.[16] For example, the quantification of residual crack patterns on the surface of reinforced concrete shear walls.[17]



See also




  • Multifractal Model of Asset Returns (MMAR)


  • Multifractal Random Walk model (MRW)

  • Fractional Brownian motion


  • Mandelbrot cascade, continuous cascade and lognormal cascade

  • Detrended fluctuation analysis

  • Tweedie distributions

  • Markov switching multifractal


  • Weighted planar stochastic lattice (WPSL) [18]



References




  1. ^ Harte, David (2001). Multifractals. London: Chapman & Hall. ISBN 978-1-58488-154-4..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ Kendal, WS; Jørgensen, BR (2011). "Tweedie convergence: a mathematical basis for Taylor's power law, 1/f noise and multifractality". Phys. Rev. E. 84: 066120. Bibcode:2011PhRvE..84f6120K. doi:10.1103/physreve.84.066120. PMID 22304168.


  3. ^ Jørgensen, B; Kokonendji, CC (2011). "Dispersion models for geometric sums". Braz J Probab Stat. 25: 263–293. doi:10.1214/10-bjps136.


  4. ^ Kendal, WS (2014). "Multifractality attributed to dual central limit-like convergence effects". Physica A. 401: 22–33. Bibcode:2014PhyA..401...22K. doi:10.1016/j.physa.2014.01.022.


  5. ^ Lopes, R.; Betrouni, N. (2009). "Fractal and multifractal analysis: A review". Medical Image Analysis. 13 (4): 634–649. doi:10.1016/j.media.2009.05.003. PMID 19535282.


  6. ^ Moreno, P. A.; Vélez, P. E.; Martínez, E.; Garreta, L. E.; Díaz, N. S.; Amador, S.; Tischer, I.; Gutiérrez, J. M.; Naik, A. K.; Tobar, F. N.; García, F. (2011). "The human genome: A multifractal analysis". BMC Genomics. 12: 506. doi:10.1186/1471-2164-12-506. PMC 3277318. PMID 21999602.


  7. ^ Atupelage, C.; Nagahashi, H.; Yamaguchi, M.; Sakamoto, M.; Hashiguchi, A. (2012). "Multifractal feature descriptor for histopathology". Analytical Cellular Pathology. 35 (2): 123–126. doi:10.3233/ACP-2011-0045. PMID 22101185.


  8. ^ A.J. Roberts and A. Cronin (1996). "Unbiased estimation of multi-fractal dimensions of finite data sets". Physica A. 233: 867–878. arXiv:chao-dyn/9601019. Bibcode:1996PhyA..233..867R. doi:10.1016/S0378-4371(96)00165-3.


  9. ^ Trevino, J.; Liew, S. F.; Noh, H.; Cao, H.; Dal Negro, L. (2012). "Geometrical structure, multifractal spectra and localized optical modes of aperiodic Vogel spirals". Optics Express. 20 (3): 3015. Bibcode:2012OExpr..20.3015T. doi:10.1364/OE.20.003015.


  10. ^
    França, L. G. S.; Miranda, J. G. V.; Leite, M.; Sharma, N. K.; Walker, M. C.; Lemieux, L.; Wang, Y. (2018). "Fractal and multifractal properties of electrographic recordings of human brain activity". arXiv:1806.03889.



  11. ^ abcd Karperien, A (2002), What are Multifractals?, ImageJ, archived from the original on 2012-02-10, retrieved 2012-02-10


  12. ^ ab Chhabra, A.; Jensen, R. (1989). "Direct determination of the f(α) singularity spectrum". Physical Review Letters. 62 (12): 1327–1330. Bibcode:1989PhRvL..62.1327C. doi:10.1103/PhysRevLett.62.1327. PMID 10039645.


  13. ^ ab Saravia, Leonardo A. (2015-08-01). "A new method to analyse species abundances in space using generalized dimensions". Methods in Ecology and Evolution: n/a-n/a. doi:10.1111/2041-210X.12417. ISSN 2041-210X.


  14. ^ Saravia, Leonardo A. (2014-01-01). "mfSBA: Multifractal analysis of spatial patterns in ecological communities". F1000Research. 3: 14. doi:10.12688/f1000research.3-14.v2. PMC 4197745. PMID 25324962.


  15. ^ Posadas, A. N. D.; Giménez, D.; Bittelli, M.; Vaz, C. M. P.; Flury, M. (2001). "Multifractal Characterization of Soil Particle-Size Distributions". Soil Science Society of America Journal. 65 (5): 1361. Bibcode:2001SSASJ..65.1361P. doi:10.2136/sssaj2001.6551361x.


  16. ^ "Fractal and multifractal analysis: A review". Medical Image Analysis. 13: 634–649. 2009. doi:10.1016/j.media.2009.05.003.


  17. ^ Ebrahimkhanlou, Arvin; Farhidzadeh, Alireza; Salamone, Salvatore (2016-01-01). "Multifractal analysis of crack patterns in reinforced concrete shear walls". Structural Health Monitoring. 15 (1): 81–92. doi:10.1177/1475921715624502. ISSN 1475-9217.


  18. ^ Hassan, M. K.; Hassan, M. Z.; Pavel, N. I. "Scale-free network topology and multifractality in a weighted planar stochastic lattice". New Journal of Physics. 12: 093045. arXiv:1008.4994. Bibcode:2010NJPh...12i3045H. doi:10.1088/1367-2630/12/9/093045.



Veneziano, Daniele; Essiam, Albert K. (June 1, 2003). "Flow through porous media with multifractal hydraulic conductivity". Water Resources Research. 39 (6). Bibcode:2003WRR....39.1166V. doi:10.1029/2001WR001018. ISSN 1944-7973. Retrieved April 15, 2014.


External links




  • Stanley H.E., Meakin P. (1988). "Multifractal phenomena in physics and chemistry" (Review). Nature. 335 (6189): 405–9. Bibcode:1988Natur.335..405S. doi:10.1038/335405a0.


  • Arneodo, Alain; Audit, Benjamin; Kestener, Pierre; Roux, Stephane (2008). "Wavelet-based multifractal analysis". Scholarpedia. 3 (3): 4103. Bibcode:2008SchpJ...3.4103A. doi:10.4249/scholarpedia.4103. ISSN 1941-6016.

  • Movies of visualizations of multifractals









這個網誌中的熱門文章

12.7 cm/40 Type 89 naval gun

Lanžov

Rikitea