PS/2 port




















































































































PS/2 port

Ps-2-ports.jpg
The color-coded PS/2 connection ports (purple for keyboard and green for mouse)

Type
Keyboard and computer mouse data connector
Designer
IBM
Designed
1987; 32 years ago (1987)
Superseded
DIN connector, DE-9 connector and Mini-DIN-9 InPort
Superseded by
USB
Hot pluggable
No
External
Yes
Cable
4 wires plus shield
Pins
6
Connector
Mini-DIN-6
Signal
5 V DC
Max. voltage
7000500000000000000♠5.0±0.5 V
Max. current
275 mA
Data signal
Serial data at 10.0–16.7 kHz with 1 start bit, 8 data bits (LSB first), 1 parity bit (odd), 1 stop bit, [1 ack bit (if host-to-device)]
Bitrate
7–12 kbit/s
Max. devices
1 or 2[a]
Protocol
Serial

MiniDIN-6 Connector Pinout.svg


Female connector from the front
Pin 1
+DATA

Data
Pin 2

Not connected[b]
Pin 3
GND

Ground
Pin 4
Vcc

+5 V DC at 275 mA
Pin 5
+CLK

Clock
Pin 6

Not connected[c]




  1. ^ Keyboard and mouse ports may be combined into a single port which can be used to connect both by splitter cable.


  2. ^ Sometimes, keyboard Data for splitter cable.


  3. ^ Sometimes, keyboard Clock for splitter cable.




The PS/2 port is a 6-pin mini-DIN connector used for connecting keyboards and mice to a PC compatible computer system. Its name comes from the IBM Personal System/2 series of personal computers, with which it was introduced in 1987. The PS/2 mouse connector generally replaced the older DE-9 RS-232 "serial mouse" connector, while the PS/2 keyboard connector replaced the larger 5-pin/180° DIN connector used in the IBM PC/AT design. The PS/2 keyboard port is electrically and logically identical to the IBM AT keyboard port, differing only in the type of electrical connector used. The PS/2 platform introduced a second port with the same design as the keyboard port for use to connect a mouse; thus the PS/2-style keyboard and mouse interfaces are electrically similar and employ the same communication protocol. However, unlike the otherwise similar Apple Desktop Bus connector used by Apple, a given system's keyboard and mouse port may not be interchangeable since the two devices use different sets of commands and the device drivers generally are hard-coded to communicate with each device at the address of the port that is conventionally assigned to that device. (That is, keyboard drivers are written to use the first port, and mouse drivers are written to use the second port.[1])




Contents






  • 1 Communication protocol


  • 2 Port availability


    • 2.1 Legacy port status and USB


      • 2.1.1 Lower Default Latency of USB Mice


      • 2.1.2 USB's Limitations around Key Rollover




    • 2.2 Conversion between PS/2 and USB




  • 3 Color code


  • 4 Hardware issues


    • 4.1 Hotplugging


    • 4.2 Durability


    • 4.3 Fault isolation




  • 5 See also


  • 6 References


  • 7 External links





Communication protocol


Each port implements a bidirectional synchronous serial channel.[2] The channel is slightly asymmetrical: it favors transmission from the input device to the computer, which is the majority case. The bidirectional IBM AT and PS/2 keyboard interface is a development of the unidirectional IBM PC keyboard interface, using the same signal lines but adding capability to send data back to the keyboard from the computer; this explains the asymmetry.[3]


The interface has two main signal lines, Data and Clock. These are single-ended (common mode) signals driven by open-collector drivers at each end. Normally, the transmission is from the device to the computer; then, the attached peripheral device generates the Clock signal. To transmit a byte, the device simply outputs a serial frame of data (including 8 bits of data and a parity bit) on the Data line serially as it toggles the Clock line once for each bit. The host controls the direction of communication using the Clock line; when the host pulls it low, communication from the attached device is inhibited. The host can interrupt the device by pulling Clock low while the device is transmitting; the device can detect this by Clock staying low when the device releases it to go high as the device-generated clock signal toggles. When the host pulls Clock low, the device must immediately stop transmitting and release Clock and Data to both float high. (So far, all of this is the same as the unidirectional communication protocol of the IBM PC keyboard port, though the serial frame formats differ.) The computer can use this state of the interface simply to inhibit the device from transmitting when the computer is not ready to receive. (For the IBM PC keyboard port, this was the only normal use of signalling from the computer to the keyboard. The keyboard could not be commanded to retransmit a keyboard scan code after it had been sent, since there was no reverse data channel to carry commands to the keyboard, so the only way to avoid losing scan codes when the computer was too busy to receive them was to inhibit the keyboard from sending them until the computer was ready. This mode of operation is still an option on the IBM AT and PS/2 keyboard port.)[4]


To send a byte of data back to the keyboard, the computer pulls Clock low, waits briefly, then toggles it with a clock signal generated by the computer, while outputting a frame of bits on the Data line, one bit per Clock pulse, just as the attached device would do to transmit in the other direction. The device defers to the control of the computer over the Clock line and receives the data byte. (A keyboard normally interprets this byte as a command or a parameter byte for a preceding command.) The computer releases the Clock line when it is done. The device will not attempt to transmit to the computer until both Clock and Data have been high for a minimum period of time.[5]


Transmission from the device to the computer is favored because from the normal idle state, the device does not have to seize the channel before it can transmit—the device just begins transmitting immediately. In contrast, the computer must seize the channel by pulling the Clock line low and waiting for the device to have time to release the channel and prepare to receive; only then can the computer begin to transmit data.



Port availability


Older laptops and most contemporary motherboards have a single port that supports either a keyboard or a mouse. Sometimes the port also allows one of the devices to be connected to the two normally unused pins in the connector to allow both to be connected at once through a special splitter cable.[6] This configuration is common on IBM/Lenovo Thinkpad notebooks among many others.


The PS/2 keyboard interface is electrically the same as the 5-pin DIN connector on earlier AT keyboards, and keyboards designed for one can be connected to the other with a simple wiring adapter. Such wiring adapters and adapter cables were once commonly available for sale. Note that IBM PC and PC XT keyboards use a different unidirectional protocol with the same DIN connector as AT keyboards, so though a PC or XT keyboard can be connected to PS/2 port using a wiring adapter intended for an AT keyboard, the earlier keyboard will not work with the PS/2 port. (At least, it cannot work with normal PS/2 keyboard driver software, including the system BIOS keyboard driver.)


In contrast to this, the PS/2 mouse interface is substantially different from RS-232 (which was generally used for mice on PCs without PS/2 ports), but nonetheless many mice were made that could operate on both with a simple passive wiring adapter, where the mice would detect the presence of the adapter based on its wiring and then switch protocols accordingly.


PS/2 mouse and keyboard connectors have also been used in non-IBM PC-compatible computer systems, such as the DEC AlphaStation line, early IBM RS/6000 CHRP machines and SGI Indy, Indigo 2, and newer (Octane, etc.) computers.[7] Various Macintosh clone computers from the late 1990s featured PS/2 mouse and keyboard ports, including the Motorola StarMax and the Power Computing PowerBase.[8]



Legacy port status and USB


PS/2 is now considered a legacy port, with USB ports now normally preferred for connecting keyboards and mice. This dates back at least as far as the Intel/Microsoft PC 2001 specification of 2000.


However, PS/2 ports continue to be included on many computer motherboards, and are favored by some users, for various reasons including the following:



  • PS/2 ports may be favored for security reasons in a corporate environment as they allow USB ports to be totally disabled, preventing the connection of any USB removable disks and malicious USB devices.[9]

  • The PS/2 interface provides no restriction on key rollover.

  • Some USB keyboards may not be able to operate the BIOS on certain motherboards due to driver issues or lack of support. The PS/2 interface has near-universal compatibility with BIOS.

  • PS/2 ports cause fewer problems when KVM switching with non-Wintel systems.[citation needed]



Lower Default Latency of USB Mice


USB mice have lower latencies than PS/2 mice because standard USB mice are polled at a default rate of 125 hertz while standard PS/2 mice send interrupts at a default rate of 100 hertz when they have data to send to the computer.[10][11] Also, USB mice do not cause the USB controller to interrupt the system when they have no status change to report according to the USB HID specification's default profile for mice.[12] Both PS/2 and USB allow the sample rate to be overridden, with PS/2 supporting a sampling rate of up to 200 hertz[2] and USB supporting a polling rate up to 1 kilohertz[10] as long as the mouse runs at full-speed USB speeds or higher.



USB's Limitations around Key Rollover


The USB HID keyboard interface requires that it explicitly handle key rollover, with the full HID keyboard class supporting n-key rollover. However, the USB boot keyboard class (designed to allow the BIOS to easily provide a keyboard in the absence of OS USB HID support) only allows 6-key rollover. Some keyboard peripherals support only the latter class, and some OSes may fail to switch to using the full HID keyboard class with a device after boot.[13] Short rollover hinders fast typists (including use in games), as well as users who depend on unusual hotkeys to be recognized by special software (for example, for system development purposes) or seek to use alternative input methods like Braille or chorded input.[citation needed]



Conversion between PS/2 and USB


Many keyboards and mice were specifically designed to support both the USB and the PS/2 interfaces and protocols, selecting the appropriate connection type at power-on. Such devices are generally equipped with a USB connector and ship with a passive wiring adapter to allow connection to a PS/2 port. Such passive adapters are not standardized and may therefore be specific to the device they came with. They cannot be used to adapt other devices to PS/2 ports.[citation needed] While combi-devices supporting USB and PS/2 are still available, most USB keyboards and mice in the 2010s no longer come with or even support the PS/2 protocol.[citation needed] Connecting them to a PS/2 port would require an adapter, actively translating between the protocols. Such adapters only support certain classes of USB devices such as keyboards and mice, but are not model- or vendor-specific.


Older PS/2-only peripherals can be connected to a USB port via an active adapter, which generally provides a pair of PS/2 ports at the cost of one USB port.[14]



Color code


Original PS/2 connectors were black or had the same color as the connecting cable (mainly white). Later the PC 97 standard introduced a color code: the keyboard port, and the plugs on compliant keyboards, were purple; mouse ports and plugs were green. (Some vendors initially used a different color code; Logitech used the color orange for the keyboard connector for a short period, but soon switched to purple.) Today this code is still used on most PCs. The pinouts of the connectors are the same, but most computers will not recognize devices connected to the wrong port.

















Color
Description
 
Purple
Keyboard
 
Green
Mouse


Hardware issues



Hotplugging


PS/2 ports are designed to connect the digital I/O lines of the microcontroller in the external device directly to the digital lines of the microcontroller on the motherboard. They are not designed to be hot swappable. Hot swapping PS/2 devices usually does not cause damage because more modern microcontrollers tend to have more robust I/O lines built into them which are harder to damage than those of older controllers;[15] however, hot swapping can still potentially cause damage on older machines, or machines with less robust port implementations.


If they are hot swapped, the devices must be similar enough that the driver running on the host system recognizes, and can be used with, the new device. Otherwise, the new device will not function properly. While this is seldom an issue with standard keyboard devices, the host system rarely recognizes the new device attached to the PS/2 mouse port. In practice most keyboards can be hot swapped but this should be avoided.



Durability




Bus powered PS/2-to-USB adapter


PS/2 connectors are not designed to be plugged in and out very often, which can lead to bent or broken pins. Additionally, PS/2 connectors only insert in one direction and must be rotated correctly before attempting connection (if a user does not pull the connector out before rotating and attempting to insert again, then bent pins will result).


Most but not all connectors include an arrow or flat section which is usually aligned to the right or top of the jack before being plugged in. The exact direction may vary on older or non-ATX computers and care should be taken to avoid damaged or bent pins when connecting devices. This issue is slightly alleviated in modern times with the advent of the PS/2-to-USB adapter: users can just leave a PS/2 connector plugged into the PS/2-to-USB adapter at all times and not risk damaging the pins this way. A USB-to-PS/2 adapter does not have this problem.



Fault isolation


In a standard implementation both PS/2 ports are usually controlled by a single microcontroller on the motherboard. This makes design and manufacturing extremely simple and cheap. However, a rare side effect of this design is that a malfunctioning device can cause the controller to become confused, resulting in both devices acting erratically. (A well designed and programmed controller will not behave in this way.) The resulting problems can be difficult to troubleshoot (e.g., a bad mouse can cause problems that appear to be the fault of the keyboard and vice versa).



See also



  • BIOS interrupt call


  • DIN connector on IBM PC keyboards

  • Bus mouse


  • Connections on mice

  • DE-9 connector

  • USB



References





  1. ^ There is actually no technical reason that either port could not work with either type of device, if appropriate software was written to support that arrangement.


  2. ^ ab http://www.computer-engineering.org/ps2mouse/


  3. ^ Compare the logic diagrams in the IBM Personal Computer Technical Reference manual with those in the IBM Personal Computer AT Technical Reference manual.


  4. ^ IBM Personal Computer Technical Reference, IBM Personal Computer AT Technical Reference


  5. ^ IBM Personal Computer AT Technical Reference


  6. ^ "PS/2 Keyboard (IBM Thinkpad) Y adapter". RU: Pinouts. Retrieved 2011-06-14..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  7. ^ Lenerz, Gerhard (7 November 2006). "Common Input Devices". Hardware. SGIstuff. Archived from the original on 2007-06-26. Retrieved 2007-03-14.


  8. ^ "Power Computing PowerBase". Low end Mac. Retrieved 2011-04-04.


  9. ^ "Massive, undetectable security flaw found in USB: It's time to get your PS/2 keyboard out of the cupboard". ExtremeTech. Retrieved 26 October 2015.


  10. ^ ab http://eu.cybergamer.com/forums/thread/260663/Mouse-Optimization-Guide:-Acceleration-Fix-and-Polling-Rate/


  11. ^ http://web.fe.up.pt/~pfs/aulas/lcom2012/labs/lab5/lab5.html


  12. ^ "Device Class Definition for HID 1.11" (PDF). Archived from the original (PDF) on 11 August 2014.


  13. ^ "N-key Rollover via PS/2 and USB". Geek hack. Archived from the original on 2010-12-25.


  14. ^ "The pros and cons of PS-2 to USB adapters and converters".


  15. ^ Adam Chapweske (2003-09-05). "The PS/2 Mouse/Keyboard Protocol". Retrieved 2016-11-26.




External links








  • "Keyboard and Auxiliary Device Controller" (PDF). Hardware Interface Technical Reference -Common Technical-. IBM. October 1990. Retrieved 2016-11-26.


  • PS/2 keyboard and mouse mini-DIN 6 connector pinouts, Burton sys.


  • PS/2 In-depth information, Computer engineering.


  • Technical information on Interfacing with the AT keyboard, Beyond logic.











這個網誌中的熱門文章

12.7 cm/40 Type 89 naval gun

Rikitea

University of Vienna