Binomial (polynomial)





In algebra, a binomial is a polynomial that is the sum of two terms, each of which is a monomial.[1] It is the simplest kind of polynomial after the monomials.




Contents






  • 1 Definition


  • 2 Operations on simple binomials


  • 3 See also


  • 4 Notes


  • 5 References





Definition


A binomial is a polynomial which is the sum of two monomials. A binomial in a single indeterminate (also known as a univariate binomial) can be written in the form


axm−bxn,{displaystyle ax^{m}-bx^{n},,}{displaystyle ax^{m}-bx^{n},,}

where a and b are numbers, and m and n are distinct nonnegative integers and x is a symbol which is called an indeterminate or, for historical reasons, a variable. In the context of Laurent polynomials, a Laurent binomial, often simply called a binomial, is similarly defined, but the exponents m and n may be negative.


More generally, a binomial may be written[2] as:


ax1n1⋯xini−bx1m1⋯ximi{displaystyle ax_{1}^{n_{1}}dotsb x_{i}^{n_{i}}-bx_{1}^{m_{1}}dotsb x_{i}^{m_{i}}}ax_{1}^{n_{1}}dotsb x_{i}^{n_{i}}-bx_{1}^{m_{1}}dotsb x_{i}^{m_{i}}

Some examples of binomials are:



3x−2x2{displaystyle 3x-2x^{2}}3x-2x^{2}

xy+yx2{displaystyle xy+yx^{2}}xy+yx^{2}

0.9x3+πy2{displaystyle 0.9x^{3}+pi y^{2}}{displaystyle 0.9x^{3}+pi y^{2}}



Operations on simple binomials


  • The binomial x2y2 can be factored as the product of two other binomials:


x2−y2=(x+y)(x−y).{displaystyle x^{2}-y^{2}=(x+y)(x-y).}x^{2}-y^{2}=(x+y)(x-y).

This is a special case of the more general formula:
xn+1−yn+1=(x−y)∑k=0nxkyn−k.{displaystyle x^{n+1}-y^{n+1}=(x-y)sum _{k=0}^{n}x^{k},y^{n-k}.}{displaystyle x^{n+1}-y^{n+1}=(x-y)sum _{k=0}^{n}x^{k},y^{n-k}.}


When working over the complex numbers, this can also be extended to:
x2+y2=x2−(iy)2=(x−iy)(x+iy).{displaystyle x^{2}+y^{2}=x^{2}-(iy)^{2}=(x-iy)(x+iy).}{displaystyle x^{2}+y^{2}=x^{2}-(iy)^{2}=(x-iy)(x+iy).}



  • The product of a pair of linear binomials (ax + b) and (cx + d) is a trinomial:

(ax+b)(cx+d)=acx2+(ad+bc)x+bd.{displaystyle (ax+b)(cx+d)=acx^{2}+(ad+bc)x+bd.}(ax+b)(cx+d)=acx^{2}+(ad+bc)x+bd.

  • A binomial raised to the nthpower, represented as (x + y)n can be expanded by means of the binomial theorem or, equivalently, using Pascal's triangle. For example, the square (x + y)2 of the binomial (x + y) is equal to the sum of the squares of the two terms and twice the product of the terms, that is:


(x+y)2=x2+2xy+y2.{displaystyle (x+y)^{2}=x^{2}+2xy+y^{2}.}{displaystyle (x+y)^{2}=x^{2}+2xy+y^{2}.}

The numbers (1, 2, 1) appearing as multipliers for the terms in this expansion are binomial coefficients two rows down from the top of Pascal's triangle. The expansion of the nth power uses the numbers n rows down from the top of the triangle.


  • An application of above formula for the square of a binomial is the "(m, n)-formula" for generating Pythagorean triples:

For m < n, let a = n2m2, b = 2mn, and c = n2 + m2; then a2 + b2 = c2.

  • Binomials that are sums or differences of cubes can be factored into lower-order polynomials as follows:


x3+y3=(x+y)(x2−xy+y2){displaystyle x^{3}+y^{3}=(x+y)(x^{2}-xy+y^{2})}x^{3}+y^{3}=(x+y)(x^{2}-xy+y^{2})

x3−y3=(x−y)(x2+xy+y2){displaystyle x^{3}-y^{3}=(x-y)(x^{2}+xy+y^{2})}x^{3}-y^{3}=(x-y)(x^{2}+xy+y^{2})



See also



  • Completing the square

  • Binomial distribution


  • List of factorial and binomial topics (which contains a large number of related links)



Notes





  1. ^ Weisstein, Eric. "Binomial". Wolfram MathWorld. Retrieved 29 March 2011..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ Sturmfels, Bernd (2002). "Solving Systems of Polynomial Equations". CBMS Regional Conference Series in Mathematics. Conference Board of the Mathematical Sciences (97): 62. Retrieved 21 March 2014.




References



  • Bostock, L.; Chandler, S. (1978). Pure Mathematics 1. Oxford University Press. p. 36. ISBN 0-85950-092-6.








這個網誌中的熱門文章

12.7 cm/40 Type 89 naval gun

Lanžov

Rikitea