Pascal's rule





In mathematics, Pascal's rule (or Pascal's formula) is a combinatorial identity about binomial coefficients. It states that for positive natural numbers n and k,



(n−1k)+(n−1k−1)=(nk){displaystyle {n-1 choose k}+{n-1 choose k-1}={n choose k}}{displaystyle {n-1 choose k}+{n-1 choose k-1}={n choose k}} with 1≤k≤n,{displaystyle 1leq kleq n,}{displaystyle 1leq kleq n,}

where (nk){displaystyle {n choose k}}{n choose k} is the binomial coefficient of the xk term in the expansion of (1 + x)n.


Pascal's rule can also be generalized to apply to multinomial coefficients.




Contents






  • 1 Combinatorial proof


  • 2 Algebraic proof


  • 3 Generalization


  • 4 See also


  • 5 References


  • 6 Sources


  • 7 External links





Combinatorial proof


Pascal's rule has an intuitive combinatorial meaning, that is clearly expressed in this counting proof.[1]


Proof. Recall that (nk){displaystyle {n choose k}}{n choose k} equals the number of subsets with k elements from a set with n elements. Suppose one particular element is uniquely labeled X in a set with n elements.


To construct a subset of k elements containing X, choose X and k-1 elements from the remaining n-1 elements in the set. There are (n−1k−1){displaystyle {n-1 choose k-1}}{n-1 choose k-1} such subsets.


To construct a subset of k elements not containing X, choose k elements from the remaining n-1 elements in the set. There are (n−1k){displaystyle {n-1 choose k}}{displaystyle {n-1 choose k}} such subsets.


Every subset of k elements either contains X or not. The total number of subsets with k elements in a set of n elements is the sum of the number of subsets containing X and the number of subsets that do not contain X, (n−1k−1)+(n−1k){displaystyle {n-1 choose k-1}+{n-1 choose k}}{displaystyle {n-1 choose k-1}+{n-1 choose k}}.


This equals (nk){displaystyle {n choose k}}{n choose k}; therefore, (nk)=(n−1k−1)+(n−1k){displaystyle {n choose k}={n-1 choose k-1}+{n-1 choose k}}{displaystyle {n choose k}={n-1 choose k-1}+{n-1 choose k}}.



Algebraic proof


Alternatively, the algebraic derivation of the binomial case follows.


(n−1k)+(n−1k−1)=(n−1)!k!(n−1−k)!+(n−1)!(k−1)!(n−k)!=(n−1)![n−kk!(n−k)!+kk!(n−k)!]=(n−1)!nk!(n−k)!=n!k!(n−k)!=(nk).{displaystyle {begin{aligned}{n-1 choose k}+{n-1 choose k-1}&={frac {(n-1)!}{k!(n-1-k)!}}+{frac {(n-1)!}{(k-1)!(n-k)!}}\&=(n-1)!left[{frac {n-k}{k!(n-k)!}}+{frac {k}{k!(n-k)!}}right]\&=(n-1)!{frac {n}{k!(n-k)!}}\&={frac {n!}{k!(n-k)!}}\&={binom {n}{k}}.end{aligned}}}{displaystyle {begin{aligned}{n-1 choose k}+{n-1 choose k-1}&={frac {(n-1)!}{k!(n-1-k)!}}+{frac {(n-1)!}{(k-1)!(n-k)!}}\&=(n-1)!left[{frac {n-k}{k!(n-k)!}}+{frac {k}{k!(n-k)!}}right]\&=(n-1)!{frac {n}{k!(n-k)!}}\&={frac {n!}{k!(n-k)!}}\&={binom {n}{k}}.end{aligned}}}



Generalization


Pascal's rule can be generalized to multinomial coefficients.[2] For any integer p such that p≥2{displaystyle pgeq 2}pgeq 2, k1,k2,k3,…,kp∈N∗{displaystyle k_{1},k_{2},k_{3},dots ,k_{p}in mathbb {N} ^{*}}{displaystyle k_{1},k_{2},k_{3},dots ,k_{p}in mathbb {N} ^{*}}, and n=k1+k2+k3+⋯+kp≥1{displaystyle n=k_{1}+k_{2}+k_{3}+cdots +k_{p}geq 1}{displaystyle n=k_{1}+k_{2}+k_{3}+cdots +k_{p}geq 1},


(n−1k1−1,k2,k3,…,kp)+(n−1k1,k2−1,k3,…,kp)+⋯+(n−1k1,k2,k3,…,kp−1)=(nk1,k2,k3,…,kp){displaystyle {n-1 choose k_{1}-1,k_{2},k_{3},dots ,k_{p}}+{n-1 choose k_{1},k_{2}-1,k_{3},dots ,k_{p}}+cdots +{n-1 choose k_{1},k_{2},k_{3},dots ,k_{p}-1}={n choose k_{1},k_{2},k_{3},dots ,k_{p}}}{displaystyle {n-1 choose k_{1}-1,k_{2},k_{3},dots ,k_{p}}+{n-1 choose k_{1},k_{2}-1,k_{3},dots ,k_{p}}+cdots +{n-1 choose k_{1},k_{2},k_{3},dots ,k_{p}-1}={n choose k_{1},k_{2},k_{3},dots ,k_{p}}}

where (nk1,k2,k3,…,kp){displaystyle {n choose k_{1},k_{2},k_{3},dots ,k_{p}}}{displaystyle {n choose k_{1},k_{2},k_{3},dots ,k_{p}}} is the coefficient of the x1k1x2k2…xpkp{displaystyle x_{1}^{k_{1}}x_{2}^{k_{2}}dots x_{p}^{k_{p}}}{displaystyle x_{1}^{k_{1}}x_{2}^{k_{2}}dots x_{p}^{k_{p}}} term in the expansion of (x1+x2+⋯+xp)n{displaystyle (x_{1}+x_{2}+dots +x_{p})^{n}}{displaystyle (x_{1}+x_{2}+dots +x_{p})^{n}}.


The algebraic derivation for this general case is as follows.[2] Let p be an integer such that p≥2{displaystyle pgeq 2}pgeq 2, k1,k2,k3,…,kp∈N∗{displaystyle k_{1},k_{2},k_{3},dots ,k_{p}in mathbb {N} ^{*}}{displaystyle k_{1},k_{2},k_{3},dots ,k_{p}in mathbb {N} ^{*}}, and n=k1+k2+k3+⋯+kp≥1{displaystyle n=k_{1}+k_{2}+k_{3}+cdots +k_{p}geq 1}{displaystyle n=k_{1}+k_{2}+k_{3}+cdots +k_{p}geq 1}. Then


(n−1k1−1,k2,k3,…,kp)+(n−1k1,k2−1,k3,…,kp)+⋯+(n−1k1,k2,k3,…,kp−1)=(n−1)!(k1−1)!k2!k3!⋯kp!+(n−1)!k1!(k2−1)!k3!⋯kp!+⋯+(n−1)!k1!k2!k3!⋯(kp−1)!=k1(n−1)!k1!k2!k3!⋯kp!+k2(n−1)!k1!k2!k3!⋯kp!+⋯+kp(n−1)!k1!k2!k3!⋯kp!=(k1+k2+⋯+kp)(n−1)!k1!k2!k3!⋯kp!=n(n−1)!k1!k2!k3!⋯kp!=n!k1!k2!k3!⋯kp!=(nk1,k2,k3,…,kp).{displaystyle {begin{aligned}&{}quad {n-1 choose k_{1}-1,k_{2},k_{3},dots ,k_{p}}+{n-1 choose k_{1},k_{2}-1,k_{3},dots ,k_{p}}+cdots +{n-1 choose k_{1},k_{2},k_{3},dots ,k_{p}-1}\&={frac {(n-1)!}{(k_{1}-1)!k_{2}!k_{3}!cdots k_{p}!}}+{frac {(n-1)!}{k_{1}!(k_{2}-1)!k_{3}!cdots k_{p}!}}+cdots +{frac {(n-1)!}{k_{1}!k_{2}!k_{3}!cdots (k_{p}-1)!}}\&={frac {k_{1}(n-1)!}{k_{1}!k_{2}!k_{3}!cdots k_{p}!}}+{frac {k_{2}(n-1)!}{k_{1}!k_{2}!k_{3}!cdots k_{p}!}}+cdots +{frac {k_{p}(n-1)!}{k_{1}!k_{2}!k_{3}!cdots k_{p}!}}={frac {(k_{1}+k_{2}+cdots +k_{p})(n-1)!}{k_{1}!k_{2}!k_{3}!cdots k_{p}!}}\&={frac {n(n-1)!}{k_{1}!k_{2}!k_{3}!cdots k_{p}!}}={frac {n!}{k_{1}!k_{2}!k_{3}!cdots k_{p}!}}={n choose k_{1},k_{2},k_{3},dots ,k_{p}}.end{aligned}}}{begin{aligned}&{}quad {n-1 choose k_{1}-1,k_{2},k_{3},dots ,k_{p}}+{n-1 choose k_{1},k_{2}-1,k_{3},dots ,k_{p}}+cdots +{n-1 choose k_{1},k_{2},k_{3},dots ,k_{p}-1}\&={frac  {(n-1)!}{(k_{1}-1)!k_{2}!k_{3}!cdots k_{p}!}}+{frac  {(n-1)!}{k_{1}!(k_{2}-1)!k_{3}!cdots k_{p}!}}+cdots +{frac  {(n-1)!}{k_{1}!k_{2}!k_{3}!cdots (k_{p}-1)!}}\&={frac  {k_{1}(n-1)!}{k_{1}!k_{2}!k_{3}!cdots k_{p}!}}+{frac  {k_{2}(n-1)!}{k_{1}!k_{2}!k_{3}!cdots k_{p}!}}+cdots +{frac  {k_{p}(n-1)!}{k_{1}!k_{2}!k_{3}!cdots k_{p}!}}={frac  {(k_{1}+k_{2}+cdots +k_{p})(n-1)!}{k_{1}!k_{2}!k_{3}!cdots k_{p}!}}\&={frac  {n(n-1)!}{k_{1}!k_{2}!k_{3}!cdots k_{p}!}}={frac  {n!}{k_{1}!k_{2}!k_{3}!cdots k_{p}!}}={n choose k_{1},k_{2},k_{3},dots ,k_{p}}.end{aligned}}


See also


  • Pascal's triangle


References





  1. ^ Brualdi, Richard A. (2010), Introductory Combinatorics (5th ed.), Prentice-Hall, p. 44, ISBN 978-0-13-602040-0.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ ab Brualdi, Richard A. (2010), Introductory Combinatorics (5th ed.), Prentice-Hall, p. 144, ISBN 978-0-13-602040-0




Sources



  • This article incorporates material from Pascal's rule on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

  • This article incorporates material from Pascal's rule proof on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

  • Merris, Russell. Combinatorics. John Wiley & Sons. 2003
    ISBN 978-0-471-26296-1



External links




  • "Central binomial coefficient". PlanetMath.


  • "Binomial coefficient". PlanetMath.


  • "Pascal's triangle". PlanetMath.




這個網誌中的熱門文章

12.7 cm/40 Type 89 naval gun

Rikitea

University of Vienna