Central binomial coefficient
This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations.June 2016) (Learn how and when to remove this template message) ( |
In mathematics the nth central binomial coefficient is the particular binomial coefficient
- (2nn)=(2n)!(n!)2 for all n≥0.{displaystyle {2n choose n}={frac {(2n)!}{(n!)^{2}}}{text{ for all }}ngeq 0.}
They are called central since they show up exactly in the middle of the even-numbered rows in Pascal's triangle. The first few central binomial coefficients starting at n = 0 are:
1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, ...; (sequence A000984 in the OEIS)
Contents
1 Properties
2 Related sequences
3 References
4 External links
Properties
The central binomial coefficients have ordinary generating function
- 11−4x=1+2x+6x2+20x3+70x4+252x5+⋯{displaystyle {frac {1}{sqrt {1-4x}}}=1+2x+6x^{2}+20x^{3}+70x^{4}+252x^{5}+cdots }
and exponential generating function
- ∑n=0∞(2nn)xnn!=e2xI0(2x),{displaystyle sum _{n=0}^{infty }{binom {2n}{n}}{frac {x^{n}}{n!}}=e^{2x}I_{0}(2x),}
where I0 is a modified Bessel function of the first kind.[1]
They also satisfy the recurrence
- (2(n+1)n+1)=4n+2n+1⋅(2nn).{displaystyle {binom {2(n+1)}{n+1}}={frac {4n+2}{n+1}}cdot {binom {2n}{n}}.}
The Wallis product can be written in asymptotic form for the central binomial coefficient:
- (2nn)∼4nπn.{displaystyle {2n choose n}sim {frac {4^{n}}{sqrt {pi n}}}.}
The latter can also be easily established by means of Stirling's formula. On the other hand, it can also be used as a means to determine the constant 2π{displaystyle {sqrt {2pi }}} in front of the Stirling formula, by comparison.
Simple bounds that immediately follow from 4n=(1+1)2n=∑k=02n(2nk){displaystyle 4^{n}=(1+1)^{2n}=sum _{k=0}^{2n}{binom {2n}{k}}} are
- 4n2n+1≤(2nn)≤4n for all n≥1{displaystyle {frac {4^{n}}{2n+1}}leq {2n choose n}leq 4^{n}{text{ for all }}ngeq 1}
Some better bounds are[2]
- 4n4n≤(2nn)≤4n3n+1 for all n≥1{displaystyle {frac {4^{n}}{sqrt {4n}}}leq {2n choose n}leq {frac {4^{n}}{sqrt {3n+1}}}{text{ for all }}ngeq 1}
and, if more accuracy is required,
(2nn)=4nπn(1−cnn) where 19<cn<18{displaystyle {2n choose n}={frac {4^{n}}{sqrt {pi n}}}left(1-{frac {c_{n}}{n}}right){text{ where }}{frac {1}{9}}<c_{n}<{frac {1}{8}}} for all n≥1.{displaystyle ngeq 1.}[citation needed]
The only central binomial coefficient that is odd is 1. More specifically, the number of factors of 2 in (2nn){displaystyle {binom {2n}{n}}} is equal to the number of ones in the binary representation of n.[3]
By the Erdős squarefree conjecture, proven in 1996, no central binomial coefficient with n > 4 is squarefree.
The central binomial coefficient (2nn){displaystyle {2n choose n}} equals the sum of the squares of the elements in row n of Pascal's triangle.[1]
Related sequences
The closely related Catalan numbers Cn are given by:
- Cn=1n+1(2nn)=(2nn)−(2nn+1) for all n≥0.{displaystyle C_{n}={frac {1}{n+1}}{2n choose n}={2n choose n}-{2n choose n+1}{text{ for all }}ngeq 0.}
A slight generalization of central binomial coefficients is to take them as
Γ(2n+1)Γ(n+1)2=1nB(n+1,n){displaystyle {frac {Gamma (2n+1)}{Gamma (n+1)^{2}}}={frac {1}{nmathrm {B} (n+1,n)}}}, with appropriate real numbers n, where Γ(x){displaystyle Gamma (x)} is the gamma function and B(x,y){displaystyle mathrm {B} (x,y)} is the beta function.
The powers of two that divide the central binomial coefficients are given by Gould's sequence, whose nth element is the number of odd integers in row n of Pascal's triangle.
References
^ ab Sloane, N. J. A. (ed.). "Sequence A000984 (Central binomial coefficients)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
^ Kazarinoff, N.D. Geometric inequalities, New York: Random House, 1961
^ Sloane, N. J. A. (ed.). "Sequence A000120". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
Koshy, Thomas (2008), Catalan Numbers with Applications, Oxford University Press, ISBN 978-0-19533-454-8.
External links
"Central binomial coefficient". PlanetMath.
"Binomial coefficient". PlanetMath.
"Pascal's triangle". PlanetMath.
"Catalan numbers". PlanetMath.
This article incorporates material from Central binomial coefficient on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.