Central binomial coefficient










Pascal's triangle, rows 0 through 7. The numbers in the central column are the central binomial coefficients.


In mathematics the nth central binomial coefficient is the particular binomial coefficient


(2nn)=(2n)!(n!)2 for all n≥0.{displaystyle {2n choose n}={frac {(2n)!}{(n!)^{2}}}{text{ for all }}ngeq 0.}{2n choose n}={frac  {(2n)!}{(n!)^{2}}}{text{ for all }}ngeq 0.

They are called central since they show up exactly in the middle of the even-numbered rows in Pascal's triangle. The first few central binomial coefficients starting at n = 0 are:



1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, ...; (sequence A000984 in the OEIS)



Contents






  • 1 Properties


  • 2 Related sequences


  • 3 References


  • 4 External links





Properties


The central binomial coefficients have ordinary generating function


11−4x=1+2x+6x2+20x3+70x4+252x5+⋯{displaystyle {frac {1}{sqrt {1-4x}}}=1+2x+6x^{2}+20x^{3}+70x^{4}+252x^{5}+cdots }{displaystyle {frac {1}{sqrt {1-4x}}}=1+2x+6x^{2}+20x^{3}+70x^{4}+252x^{5}+cdots }

and exponential generating function


n=0∞(2nn)xnn!=e2xI0(2x),{displaystyle sum _{n=0}^{infty }{binom {2n}{n}}{frac {x^{n}}{n!}}=e^{2x}I_{0}(2x),}{displaystyle sum _{n=0}^{infty }{binom {2n}{n}}{frac {x^{n}}{n!}}=e^{2x}I_{0}(2x),}

where I0 is a modified Bessel function of the first kind.[1]


They also satisfy the recurrence


(2(n+1)n+1)=4n+2n+1⋅(2nn).{displaystyle {binom {2(n+1)}{n+1}}={frac {4n+2}{n+1}}cdot {binom {2n}{n}}.}{displaystyle {binom {2(n+1)}{n+1}}={frac {4n+2}{n+1}}cdot {binom {2n}{n}}.}

The Wallis product can be written in asymptotic form for the central binomial coefficient:


(2nn)∼4nπn.{displaystyle {2n choose n}sim {frac {4^{n}}{sqrt {pi n}}}.}{displaystyle {2n choose n}sim {frac {4^{n}}{sqrt {pi n}}}.}

The latter can also be easily established by means of Stirling's formula. On the other hand, it can also be used as a means to determine the constant {displaystyle {sqrt {2pi }}}{sqrt {2pi }} in front of the Stirling formula, by comparison.


Simple bounds that immediately follow from 4n=(1+1)2n=∑k=02n(2nk){displaystyle 4^{n}=(1+1)^{2n}=sum _{k=0}^{2n}{binom {2n}{k}}}{displaystyle 4^{n}=(1+1)^{2n}=sum _{k=0}^{2n}{binom {2n}{k}}} are


4n2n+1≤(2nn)≤4n for all n≥1{displaystyle {frac {4^{n}}{2n+1}}leq {2n choose n}leq 4^{n}{text{ for all }}ngeq 1}{frac  {4^{n}}{2n+1}}leq {2n choose n}leq 4^{n}{text{ for all }}ngeq 1

Some better bounds are[2]


4n4n≤(2nn)≤4n3n+1 for all n≥1{displaystyle {frac {4^{n}}{sqrt {4n}}}leq {2n choose n}leq {frac {4^{n}}{sqrt {3n+1}}}{text{ for all }}ngeq 1}{frac  {4^{n}}{{sqrt  {4n}}}}leq {2n choose n}leq {frac  {4^{n}}{{sqrt  {3n+1}}}}{text{ for all }}ngeq 1

and, if more accuracy is required,



(2nn)=4nπn(1−cnn) where 19<cn<18{displaystyle {2n choose n}={frac {4^{n}}{sqrt {pi n}}}left(1-{frac {c_{n}}{n}}right){text{ where }}{frac {1}{9}}<c_{n}<{frac {1}{8}}}{2n choose n}={frac  {4^{n}}{{sqrt  {pi n}}}}left(1-{frac  {c_{n}}{n}}right){text{ where }}{frac  {1}{9}}<c_{n}<{frac  {1}{8}} for all n≥1.{displaystyle ngeq 1.}ngeq 1.[citation needed]

The only central binomial coefficient that is odd is 1. More specifically, the number of factors of 2 in (2nn){displaystyle {binom {2n}{n}}}{binom  {2n}{n}} is equal to the number of ones in the binary representation of n.[3]


By the Erdős squarefree conjecture, proven in 1996, no central binomial coefficient with n > 4 is squarefree.


The central binomial coefficient (2nn){displaystyle {2n choose n}}{2n choose n} equals the sum of the squares of the elements in row n of Pascal's triangle.[1]



Related sequences


The closely related Catalan numbers Cn are given by:


Cn=1n+1(2nn)=(2nn)−(2nn+1) for all n≥0.{displaystyle C_{n}={frac {1}{n+1}}{2n choose n}={2n choose n}-{2n choose n+1}{text{ for all }}ngeq 0.}C_{n}={frac  {1}{n+1}}{2n choose n}={2n choose n}-{2n choose n+1}{text{ for all }}ngeq 0.

A slight generalization of central binomial coefficients is to take them as
Γ(2n+1)Γ(n+1)2=1nB(n+1,n){displaystyle {frac {Gamma (2n+1)}{Gamma (n+1)^{2}}}={frac {1}{nmathrm {B} (n+1,n)}}}{frac  {Gamma (2n+1)}{Gamma (n+1)^{2}}}={frac  {1}{nmathrm{B} (n+1,n)}}, with appropriate real numbers n, where Γ(x){displaystyle Gamma (x)}Gamma(x) is the gamma function and B(x,y){displaystyle mathrm {B} (x,y)}mathrm{B} (x,y) is the beta function.


The powers of two that divide the central binomial coefficients are given by Gould's sequence, whose nth element is the number of odd integers in row n of Pascal's triangle.



References





  1. ^ ab Sloane, N. J. A. (ed.). "Sequence A000984 (Central binomial coefficients)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ Kazarinoff, N.D. Geometric inequalities, New York: Random House, 1961


  3. ^ Sloane, N. J. A. (ed.). "Sequence A000120". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.




  • Koshy, Thomas (2008), Catalan Numbers with Applications, Oxford University Press, ISBN 978-0-19533-454-8.


External links




  • "Central binomial coefficient". PlanetMath.


  • "Binomial coefficient". PlanetMath.


  • "Pascal's triangle". PlanetMath.


  • "Catalan numbers". PlanetMath.


This article incorporates material from Central binomial coefficient on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.







這個網誌中的熱門文章

12.7 cm/40 Type 89 naval gun

Lanžov

Rikitea