Microbial inoculant




Microbial inoculants also known as soil inoculants are agricultural amendments that use beneficial endophytes (microbes) to promote plant health. Many of the microbes involved form symbiotic relationships with the target crops where both parties benefit (mutualism). While microbial inoculants are applied to improve plant nutrition, they can also be used to promote plant growth by stimulating plant hormone production (Bashan & Holguin, 1997; Sullivan, 2001).


Research into the benefits of inoculants in agriculture extends beyond their capacity as biofertilizers. Microbial inoculants can induce systemic acquired resistance (SAR) of crop species to several common crop diseases (provides resistance against pathogens). So far SAR has been demonstrated for powdery mildew (Blumeria graminis f. sp. hordei, Heitefuss, 2001), take-all (Gaeumannomyces graminis var. tritici, Khaosaad et al., 2007), leaf spot (Pseudomonas syringae, Ramos Solano et al., 2008) and root rot (Fusarium culmorum, Waller et al. 2005).




Contents






  • 1 Bacterial


    • 1.1 Rhizobacterial inoculants


      • 1.1.1 Nitrogen-fixing bacteria


      • 1.1.2 Phosphate-solubilising bacteria






  • 2 Fungal inoculants


    • 2.1 Fungal partners


    • 2.2 Effects


    • 2.3 Inoculant usage




  • 3 Composite inoculants


  • 4 See also


  • 5 References


  • 6 External links





Bacterial



Rhizobacterial inoculants


The rhizobacteria commonly applied as inoculants include nitrogen-fixers and phosphate-solubilisers which enhance the availability of the macronutrients nitrogen and phosphorus to the host plant. Such bacteria are commonly referred to as plant growth promoting rhizobacteria (PGPR).



Nitrogen-fixing bacteria


The most commonly applied rhizobacteria are Rhizobium and closely related genera. Rhizobium are nitrogen-fixing bacteria that form symbiotic associations within nodules on the roots of legumes. This increases host nitrogen nutrition and is important to the cultivation of soybeans, chickpeas and many other leguminous crops. For non-leguminous crops, Azospirillum has been demonstrated to be beneficial in some cases for nitrogen fixation and plant nutrition (Bashan & Holguin, 1997).


For cereal crops, diazotrophic rhizobacteria have increased plant growth,[1] grain yield (Caballero-Mellado et al., 1992), nitrogen and phosphorus uptake,[2] and nitrogen (Caballero-Mellado et al., 1992), phosphorus (Caballero-Mellado et al., 1992; Belimov et al., 1995) and potassium content (Caballero-Mellado et al., 1992). Rhizobacteria live in root nodes, and are associated with legumes.



Phosphate-solubilising bacteria


To improve phosphorus nutrition, the use of phosphate-solubilising bacteria (PSB) such as Agrobacterium radiobacter has also received attention (Belimov et al., 1995a; 1995b; Singh & Kapoor, 1999). As the name suggests, PSB are free-living bacteria that break down inorganic soil phosphates to simpler forms that enable uptake by plants.



Fungal inoculants


Several different fungal inoculants (typically referred to as mycorrhizae) have been explored for their benefits to plant nutrition. Fungal inoculation has been observed to
benefit plant success and improve soil quality. The most commonly investigated fungi for this purpose are the arbuscular mycorrhizae (AM or AMF). Ectomycorrhizae are often symbiotic with coniferous species. Other endophytic fungi, such as Piriformis indica can also be beneficial.[3]



Fungal partners


Fungal inoculation alone can benefit host
plants. Inoculation paired with other amendments can further improve
conditions. Arbuscular mycorrhizal inoculation combined with compost is a
common household amendment for personal gardens, agriculture, and nurseries. It
has been observed that this pairing can also promote microbial functions in
soils that have been affected by mining.[4]


Certain fungal partners do best in specific
ecotones or with certain crops. Arbuscular mycorrhizal inoculation paired with plant
growth promoting bacteria resulted in a higher yield and quicker maturation in
upland rice patties.[5]


Maize growth improved after an amendment of
arbuscular mycorrhizae and biochar. This amendment can also decrease
cadmium uptake by crops.[6]



Effects


The effects of mycorrhizal inoculation include increased nutrient uptake and seedling establishment. Other effects
include increases in salinity tolerance,[7] drought tolerance,[8] and resistance to trace metal toxicity.[9]



Inoculant usage


Fungal inoculants can be used with or without additional amendments in private gardens, homesteads, agricultural production, native nurseries, and land restoration projects.



Composite inoculants


The combination of strains of Plant Growth Promoting Rhizobacteria has been shown to benefit rice (Oryza, Nguyen et al. (2002)) and barley.[10] The main benefit from dual inoculants is increased plant nutrient uptake, from both soil and fertiliser (Bashan et al., 2004; Belimov et al. 1995a). Multiple strain inoculants have also been demonstrated to increase total nitrogenase activity compared to single strain inoculants, even when only one strain is diazotrophic (Lippi et al., 1992; Khammas & Kaiser, 1992, Belimov et al. 1995a).


PGPR and arbuscular mycorrhizae in combination can be useful in increasing wheat growth in nutrient poor soil[11] and improving nitrogen-extraction from fertilised soils.[12] In salinised soils, Rabie (2005) found that inoculating AM-infected Vicia faba plants with Azospirillum brasilense amplified the beneficial effects of AM inoculation.



See also




  • Biological control with micro-organisms

  • Carnivorous fungus

  • Endosymbiont

  • List of endophytes

  • Plant pathology

  • Plant disease resistance




References





  1. ^ Galal, Y. G. M., El-Ghandour, I. A., Osman, M. E. & Abdel Raouf, A. M. N. (2003), The e ffect of inoculation by mycorrhizae and rhizobium on the growth and yield of wheat in relation to nitrogen and phosphorus fertilization as assessed by 15n techniques, Symbiosis, 34(2), 171-183.


  2. ^ Galal, Y. G. M., El-Ghandour, I. A., Osman, M. E. & Abdel Raouf, A. M. N. (2003), The e ffect of inoculation by mycorrhizae and rhizobium on the growth and yield of wheat in relation to nitrogen and phosphorus fertilization as assessed by 15n techniques, Symbiosis, 34(2), 171-183.


  3. ^ Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Hückelhoven, R., Neumann, C., von Wettstein, D. and Franken, P., 2005. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences of the United States of America, 102(38), pp.13386-13391.


  4. ^ Kohler, J., Caravaca, F., Azcón, R., Díaz, G. and Roldán, A. (2015). The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing. Science of the Total Environment, 514, pp.42-48.


  5. ^ Diedhiou, A., Mbaye, F., Mbodj, D., Faye, M., Pignoly, S., Ndoye, I., Djaman, K., Gaye, S., Kane, A., Laplaze, L., Manneh, B. and Champion, A. (2016). Field Trials Reveal Ecotype-Specific Responses to Mycorrhizal Inoculation in Rice. PLOS ONE, 11(12), p.e0167014.


  6. ^ Liu, L., Li, J., Yue, F., Yan, X., Wang, F., Bloszies, S. and Wang, Y. (2018). Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere, 194, pp.495-503.


  7. ^ Hirrel, M.C. and Gerdemann, J.W., 1980. Improved Growth of Onion and Bell Pepper in Saline Soils by Two Vesicular-Arbuscular Mycorrhizal Fungi 1. Soil Science Society of America Journal, 44(3), pp.654-655.


  8. ^ Ferrazzano, S. and Williamson, P. (2013). Benefits of mycorrhizal inoculation in reintroduction of endangered plant species under drought conditions. Journal of Arid Environments, 98, pp.123-125.


  9. ^
    Firmin, S., Labidi, S., Fontaine, J., Laruelle, F., Tisserant, B., Nsanganwimana, F., Pourrut, B., Dalpé, Y., Grandmougin, A., Douay, F., Shirali, P., Verdin, A. and Lounès-Hadj Sahraoui, A. (2015). Arbuscular mycorrhizal fungal inoculation protects Miscanthus×giganteus against trace element toxicity in a highly metal-contaminated site. Science of the Total Environment, 527-528, pp.91-99.



  10. ^ Belimov, A. A., Kojemiakov, A. P. & Chuvarliyeva, C. V. (1995a) Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilising bacteria. Plant and Soil, 173, 29-37.


  11. ^ Singh, S. & Kapoor, K. K. (1999) Inoculation with phosphate-solubilising microorganisms and a vesicular-arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in sandy soil. Biology and Fertility of Soils, 28, 139-144.


  12. ^ Galal, Y. G. M., El-Ghandour, I. A., Osman, M. E. & Abdel Raouf, A. M. N. (2003), The effect of inoculation by mycorrhizae and rhizobium on the growth and yield of wheat in relation to nitrogen and phosphorus fertilization as assessed by 15n techniques, Symbiosis, 34(2), 171-183.




  • Bashan, Y. & Holguin, G. (1997), Azospirillum-plant relationships: environmental and physiological advances (1990-1996), Canadian Journal of Microbiology 43, 103-121.

  • Bashan, Y., Holguin, G. & E., D.-B. L. (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Canadian Journal of Microbiology, 50, 521-577.

  • Belimov, A. A., Kunakova, A. M., Vasilyeva, N. D., Gruzdeva, E. V., Vorobiev, N. I., Kojemiakov, A. P., Khamova, O. F., Postavskaya, S. M. & Sokova, S. A. (1995b) Relationship between survival rates of associative nitrogen-fixers on roots and yield response of plants to inoculation. FEMS Microbiology Ecology, 17, 187-196.

  • Caballero-Mellado, J., Carcano-Montiel, M. G. & Mascarua-Esparza, M. A. (1992), Field inoculation of wheat (triticum aestivum) with azospirillum brasilense under temperate climate, Symbiosis, 13, 243-253.

  • Heitefuss, R. (2001) Defence reactions of plants to fungal pathogens: principles and perspectives, using powdery mildew on cereals as an example. Naturwissenschaften, 88, 273-283.

  • Khammas, K. M. & Kaiser, P. (1992) Pectin decomposition and associated nitrogen fixation by mixed cultures of Azospirillum and Bacillus species. Canadian Journal of Microbiology, 38, 794-797.

  • Khaosaad, T., Garcia-Garrido, J. M., Steinkellner, S. & Vierheilig, H. (2007) Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biology and Biochemistry, 39, 727-734.

  • Lippi, D., Cacciari, I., Pietrosanti, T. & Pietrosanti, W. (1992) Interactions between Azospirillum and Arthrobacter in diazotrophic mixed culture. Symbiosis, 13, 107-114.

  • Nguyen, T. H., Kennedy, I. R. & Roughley, R. J. (2002) The response of field-grown rice to inoculation with a multi-strain biofertiliser in the Hanoi district, Vietnam. IN I. R. Kennedy & A. T. M. A. Choudhury (Eds.) Biofertilisers in Action. Barton, ACT, Rural Indrustries Research & Development Corporation.

  • Rabie, G. H. & Almadini, A. M. (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. African Journal of Biotechnology, 4 (3), 210-222.

  • Ramos Solano, R., Barriuso Maicas, J., Pereyra De La Iglesia, M. T., Domenech, J. &

  • Gutierrez Manero, F. J. (2008) Systemic disease protection elicited by plant growth

  • promoting rhizobacteria strains: relationship between metabolic responses, systemic disease

  • protection, and biotic elicitors. Phytopathology, 98 (4), 451-457.

  • Sullivan, P. (2001) Alternative soil amendments. Appropriate Technology Transfer for Rural Areas, National Center for Appropriate Technology. http://attra.ncat.org/attra-pub/PDF/altsoil.pdf

  • Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Huckelhoven, R., Neumann, C., Von Wettstein, D., Franken, P. & Kogel, K.-H. (2005) The endophytic fungus Piriformis indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences, 102 (38), 13386-13391.



External links



  • http://www.satavic.org/biofertilisers.htm


  • https://web.archive.org/web/20080509170441/http://mycorrhiza.ag.utk.edu/ Mycorrhiza Literature Exchange, Plant Sciences, University of Tennessee


  • http://www.soilfoodweb.com.au Soil Foodweb Institute Australia


  • http://attra.ncat.org ATTRA – National Sustainable Agriculture Information Service




這個網誌中的熱門文章

12.7 cm/40 Type 89 naval gun

Shark

Wiciokrzew