5-simplex honeycomb
5-simplex honeycomb | |
---|---|
(No image) | |
Type | Uniform 5-honeycomb |
Family | Simplectic honeycomb |
Schläfli symbol | {3[6]} |
Coxeter diagram | |
5-face types | {34} , t1{34} t2{34} |
4-face types | {33} , t1{33} |
Cell types | {3,3} , t1{3,3} |
Face types | {3} |
Vertex figure | t0,4{34} |
Coxeter groups | A~5{displaystyle {tilde {A}}_{5}}×2, <[3[6]]> |
Properties | vertex-transitive |
In five-dimensional Euclidean geometry, the 5-simplex honeycomb or hexateric honeycomb is a space-filling tessellation (or honeycomb or pentacomb). Each vertex is shared by 12 5-simplexes, 30 rectified 5-simplexes, and 20 birectified 5-simplexes. These facet types occur in proportions of 2:2:1 respectively in the whole honeycomb.
Contents
1 A5 lattice
2 Related polytopes and honeycombs
3 Projection by folding
4 See also
5 Notes
6 References
A5 lattice
This vertex arrangement is called the A5 lattice or 5-simplex lattice. The 30 vertices of the stericated 5-simplex vertex figure represent the 30 roots of the A~5{displaystyle {tilde {A}}_{5}} Coxeter group.[1] It is the 5-dimensional case of a simplectic honeycomb.
The A2
5 lattice is the union of two A5 lattices:
∪
The A3
5 is the union of three A5 lattices:
∪ ∪ .
The A*
5 lattice (also called A6
5) is the union of six A5 lattices, and is the dual vertex arrangement to the omnitruncated 5-simplex honeycomb, and therefore the Voronoi cell of this lattice is an omnitruncated 5-simplex.
∪
∪
∪
∪
∪
= dual of
Related polytopes and honeycombs
This honeycomb is one of 12 unique uniform honeycombs[2] constructed by the A~5{displaystyle {tilde {A}}_{5}} Coxeter group. The extended symmetry of the hexagonal diagram of the A~5{displaystyle {tilde {A}}_{5}} Coxeter group allows for automorphisms that map diagram nodes (mirrors) on to each other. So the various 12 honeycombs represent higher symmetries based on the ring arrangement symmetry in the diagrams:
A5 honeycombs | ||||
---|---|---|---|---|
Hexagon symmetry | Extended symmetry | Extended diagram | Extended group | Honeycomb diagrams |
a1 | [3[6]] | A~5{displaystyle {tilde {A}}_{5}} | ||
d2 | <[3[6]]> | A~5{displaystyle {tilde {A}}_{5}}×21 | 1, , , , | |
p2 | [[3[6]]] | A~5{displaystyle {tilde {A}}_{5}}×22 | 2, | |
i4 | [<[3[6]]>] | A~5{displaystyle {tilde {A}}_{5}}×21×22 | , | |
d6 | <3[3[6]]> | A~5{displaystyle {tilde {A}}_{5}}×61 | ||
r12 | [6[3[6]]] | A~5{displaystyle {tilde {A}}_{5}}×12 | 3 |
Projection by folding
The 5-simplex honeycomb can be projected into the 3-dimensional cubic honeycomb by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same vertex arrangement:
A~5{displaystyle {tilde {A}}_{5}} | |
---|---|
C~3{displaystyle {tilde {C}}_{3}} |
See also
Regular and uniform honeycombs in 5-space:
- 5-cubic honeycomb
- 5-demicube honeycomb
- Truncated 5-simplex honeycomb
- Omnitruncated 5-simplex honeycomb
Notes
^ http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/A5.html
^ mathworld: Necklace, OEIS sequence A000029 13-1 cases, skipping one with zero marks
References
Norman Johnson Uniform Polytopes, Manuscript (1991)
Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
ISBN 978-0-471-01003-6 [1]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
Fundamental convex regular and uniform honeycombs in dimensions 2-9 | ||||||
---|---|---|---|---|---|---|
Space | Family | A~n−1{displaystyle {tilde {A}}_{n-1}} | C~n−1{displaystyle {tilde {C}}_{n-1}} | B~n−1{displaystyle {tilde {B}}_{n-1}} | D~n−1{displaystyle {tilde {D}}_{n-1}} | G~2{displaystyle {tilde {G}}_{2}} / F~4{displaystyle {tilde {F}}_{4}} / E~n−1{displaystyle {tilde {E}}_{n-1}} |
E2 | Uniform tiling | {3[3]} | δ3 | hδ3 | qδ3 | Hexagonal |
E3 | Uniform convex honeycomb | {3[4]} | δ4 | hδ4 | qδ4 | |
E4 | Uniform 4-honeycomb | {3[5]} | δ5 | hδ5 | qδ5 | 24-cell honeycomb |
E5 | Uniform 5-honeycomb | {3[6]} | δ6 | hδ6 | qδ6 | |
E6 | Uniform 6-honeycomb | {3[7]} | δ7 | hδ7 | qδ7 | 222 |
E7 | Uniform 7-honeycomb | {3[8]} | δ8 | hδ8 | qδ8 | 133 • 331 |
E8 | Uniform 8-honeycomb | {3[9]} | δ9 | hδ9 | qδ9 | 152 • 251 • 521 |
E9 | Uniform 9-honeycomb | {3[10]} | δ10 | hδ10 | qδ10 | |
En-1 | Uniform (n-1)-honeycomb | {3[n]} | δn | hδn | qδn | 1k2 • 2k1 • k21 |