5-simplex honeycomb



















































5-simplex honeycomb
(No image)
Type
Uniform 5-honeycomb
Family
Simplectic honeycomb
Schläfli symbol {3[6]}
Coxeter diagram
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png
5-face types
{34} 5-simplex t0.svg, t1{34} 5-simplex t1.svg
t2{34} 5-simplex t2.svg
4-face types
{33} 4-simplex t0.svg, t1{33} 4-simplex t1.svg
Cell types
{3,3} 3-simplex t0.svg, t1{3,3} 3-simplex t1.svg
Face types
{3} 2-simplex t0.svg
Vertex figure
t0,4{34} 5-simplex t04.svg
Coxeter groups
A~5{displaystyle {tilde {A}}_{5}}{tilde {A}}_{5}×2, <[3[6]]>
Properties
vertex-transitive

In five-dimensional Euclidean geometry, the 5-simplex honeycomb or hexateric honeycomb is a space-filling tessellation (or honeycomb or pentacomb). Each vertex is shared by 12 5-simplexes, 30 rectified 5-simplexes, and 20 birectified 5-simplexes. These facet types occur in proportions of 2:2:1 respectively in the whole honeycomb.




Contents






  • 1 A5 lattice


  • 2 Related polytopes and honeycombs


  • 3 Projection by folding


  • 4 See also


  • 5 Notes


  • 6 References





A5 lattice


This vertex arrangement is called the A5 lattice or 5-simplex lattice. The 30 vertices of the stericated 5-simplex vertex figure represent the 30 roots of the A~5{displaystyle {tilde {A}}_{5}}{tilde {A}}_{5} Coxeter group.[1] It is the 5-dimensional case of a simplectic honeycomb.


The A2
5
lattice is the union of two A5 lattices:



CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png


The A3
5
is the union of three A5 lattices:



CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 10lru.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 01lr.pngCDel split2.pngCDel node.png.


The A*
5
lattice (also called A6
5
) is the union of six A5 lattices, and is the dual vertex arrangement to the omnitruncated 5-simplex honeycomb, and therefore the Voronoi cell of this lattice is an omnitruncated 5-simplex.



CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png
CDel node.pngCDel split1.pngCDel nodes 10lur.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png
CDel node.pngCDel split1.pngCDel nodes 01lr.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png
CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 10lru.pngCDel split2.pngCDel node.png
CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 01lr.pngCDel split2.pngCDel node.png
CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png = dual of CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png



Related polytopes and honeycombs


This honeycomb is one of 12 unique uniform honeycombs[2] constructed by the A~5{displaystyle {tilde {A}}_{5}}{tilde {A}}_{5} Coxeter group. The extended symmetry of the hexagonal diagram of the A~5{displaystyle {tilde {A}}_{5}}{tilde {A}}_{5} Coxeter group allows for automorphisms that map diagram nodes (mirrors) on to each other. So the various 12 honeycombs represent higher symmetries based on the ring arrangement symmetry in the diagrams:























































Projection by folding


The 5-simplex honeycomb can be projected into the 3-dimensional cubic honeycomb by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same vertex arrangement:












A~5{displaystyle {tilde {A}}_{5}}{tilde {A}}_{5}

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

C~3{displaystyle {tilde {C}}_{3}}{tilde {C}}_{3}

CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png


See also


Regular and uniform honeycombs in 5-space:



  • 5-cubic honeycomb

  • 5-demicube honeycomb

  • Truncated 5-simplex honeycomb

  • Omnitruncated 5-simplex honeycomb



Notes





  1. ^ http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/A5.html


  2. ^ mathworld: Necklace, OEIS sequence A000029 13-1 cases, skipping one with zero marks




References




  • Norman Johnson Uniform Polytopes, Manuscript (1991)


  • Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
    ISBN 978-0-471-01003-6 [1]

    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)

    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]


































































































Fundamental convex regular and uniform honeycombs in dimensions 2-9

Space

Family

A~n−1{displaystyle {tilde {A}}_{n-1}}{tilde {A}}_{n-1}

C~n−1{displaystyle {tilde {C}}_{n-1}}{tilde {C}}_{n-1}

B~n−1{displaystyle {tilde {B}}_{n-1}}{tilde {B}}_{n-1}

D~n−1{displaystyle {tilde {D}}_{n-1}}{tilde {D}}_{n-1}

G~2{displaystyle {tilde {G}}_{2}}{tilde {G}}_{2} / F~4{displaystyle {tilde {F}}_{4}}{tilde {F}}_{4} / E~n−1{displaystyle {tilde {E}}_{n-1}}{tilde {E}}_{n-1}
E2

Uniform tiling

{3[3]}

δ3

3

3

Hexagonal
E3

Uniform convex honeycomb

{3[4]}

δ4

4

4

E4

Uniform 4-honeycomb

{3[5]}

δ5

5

5

24-cell honeycomb
E5

Uniform 5-honeycomb

{3[6]}

δ6

6

6

E6

Uniform 6-honeycomb

{3[7]}

δ7

7

7

222
E7

Uniform 7-honeycomb

{3[8]}

δ8

8

8

133 • 331
E8

Uniform 8-honeycomb

{3[9]}

δ9

9

9

152 • 251 • 521
E9

Uniform 9-honeycomb
{3[10]}

δ10

10

10

En-1
Uniform (n-1)-honeycomb

{3[n]}

δn

n

n

1k2 • 2k1 • k21



這個網誌中的熱門文章

12.7 cm/40 Type 89 naval gun

Rikitea

University of Vienna