Organ stop






The choir division of the organ at St. Raphael's Cathedral, Dubuque, Iowa. Shown here are several ranks of pipes, each of which would be controlled from one of the stops on the console.


An organ stop (or just stop) is a component of a pipe organ that admits pressurized air (known as wind) to a set of organ pipes. Its name comes from the fact that stops can be used selectively by the organist; each can be "on" (admitting the passage of air to certain pipes), or "off" (stopping the passage of air to certain pipes).


The term can also refer to the control that operates this mechanism, commonly called a stop tab, stop knob, or drawknob. On electric or electronic organs that imitate a pipe organ, the same terms are often used, with the exception of the Hammond organ and clonewheel organs, which use the term "drawbar".


The term is also sometimes used as a synonym for register, referring to rank(s) of pipes controlled by a single stop. Registration is the art of combining stops to produce a certain sound. The phrase "pull out all the stops" has entered general usage, for deploying all available means to pursue a goal.




Contents






  • 1 Mechanics


    • 1.1 Methods of actuation


    • 1.2 Unification, borrowing and extension




  • 2 Pitch and length


    • 2.1 Octaves


    • 2.2 Mutations and resultants


    • 2.3 Mixtures




  • 3 Nomenclature


    • 3.1 Classifications of stops




  • 4 Notable organ stops


  • 5 References


  • 6 Further reading


  • 7 External links





Mechanics




Stop tabs on an electronic organ, located above the uppermost manual. Compare this placement to that of the stop knobs on the pipe organ console pictured below.


Organ pipes are physically organized within the organ into sets according to note and timbre. A set of pipes producing the same timbre for each note is called a rank, while each key on a pipe organ controls a note which may be sounded by different ranks of pipes, alone or in combination. The use of stops enables the organist to selectively turn off ("stop") certain ranks in order to produce different combinations of sounds, as opposed to hearing all sounds simultaneously. A stop may be linked to a single or multiple ranks. While nowadays one speaks of "drawing" a stop to select a particular rank or set of ranks, the earliest organs were constructed with all ranks "on" by default.


The mechanism for operating the stops varies widely, but the principle is the same: the stop control at the console allows the organist to select which ranks of pipes will sound when a key is pressed. When the organist desires a rank to sound, they operate the corresponding control at the console, allowing wind to flow to the pipes. Likewise, the organist can deny wind to the pipes by operating the same control in the opposite direction. Common stop controls include stop knobs, which move in and out of the console, and stop tabs, which toggle back and forth in position.


Some organs, particularly smaller historical organs from England, Spain or Portugal,[1] feature divided registers, in which there are two stop knobs for certain ranks. One stop knob will control the upper portion of the keyboard, and the other will control the lower portion of the keyboard. This arrangement allows the upper portion of the keyboard to sound a different registration than the lower portion, which lends a greater versatility to smaller organs, especially those with only one manual.


Ranks which are neither divided nor extended (see below Unification, borrowing and extension) generally contain as many pipes as there are keys on the keyboard to which they are assigned: in most cases 61 pipes for a rank assigned to a manual and 32 pipes for a rank assigned to the pedal.



Methods of actuation


Over the course of the history of the pipe organ, there have been several different designs by which stops are actuated. In the longest-standing design, known as the slider chest, there is a strip of material (typically wood) called a slider which fits underneath a given rank of pipes. The slider has small holes drilled in it, one for each pipe in the rank. When the stop is set such that pipes are inactive, the holes are misaligned with the pipes, preventing the air from flowing up into the pipes above. When the stop is set such that the pipes are active, the slider moves over, aligning the holes with the pipes, allowing air to reach them. Because the slider chest was developed before the advent of electricity, it is inherently mechanical in nature. Many organs originally built with mechanical actuators have been retrofitted with electric actuators.


Other common designs include the spring chest, the cone valve chest, and the Pitman chest.



Unification, borrowing and extension


The term unification refers to the practice of expanding the tonal resources of an organ without adding more pipes by allowing several different stops to control the same rank of pipes. For example, an 8′ Gedeckt may also be made available as a 4′ Gedeckt, either on the same or a different manual. When both of these stops are selected and a key (for example, c′) is pressed, two pipes of the same rank will sound: the pipe normally corresponding to the key played (c′), and the pipe one octave above that (c″).


Borrowing or duplexing refers to one rank being made available from multiple stop knobs, often on different manuals or pedal.[2]Extension refers to the addition of extra pipes to the high and/or low ends of a rank in order to allow that rank to be borrowed by higher and/or lower stops. Unification and borrowing (duplexing) is mostly related to pipe organs with physical pipes; however, some (older) electronic organs also used unification and duplexing to expand the tonal resources of a limited number of synthesized virtual ranks.


While unification and extension increase the tonal resources and flexibility of the organ, greater care needs to be taken by the organist in registering the organ, particularly when the composition requires many notes to sound at the same time. In a non-unified organ, voices are scaled for their intended job. As an example, the octave (4') diapason is generally of a smaller scale and softer than the corresponding 8' diapason rank, whereas in unification they would be of the same strength due to using the same set of pipes. Straight reed choruses (16', 8' and 4') have the luxury of ranks with different timbres, whereas a unified reed chorus has voices that are identical.


Playing with all stops out on a heavily unified/duplexed organ may result in chords that sound thinner or emphasize higher harmonics on some notes more than others, due to notes in different octaves using the same pipes instead of having their own. Part of an organist's training is to detect unification and duplexing and to create registrations that take them into account.[3] Nonetheless, heavy unification can create issues for visiting artists with limited practice times, or those improvising compositions.


Borrowing between manuals occurs in English organs from about 1700,[citation needed] but extension of pipe ranks for the purpose of borrowing at different pitches is a relatively recent development.[citation needed] Extension and unification are heavily used in theatre organs to produce the maximum number of voices from a minimal number of pipes. It is still typical to see a significant amount of unification and duplexing in practice organs and small church organs. Traditionally, less use has been made of extension in large church organs and those designed for classical music, with authorities tending to regard borrowing in general and extension in particular as things to be avoided if possible, except in a few cases where space for pipes is limited, making extension and/or unification necessary.[citation needed] Borrowing 16' manual ranks for the pedal division is more widely employed because of the expense and space requirements of 16' stops and the versatility this allows.



Pitch and length




The organ at the Naval Academy Chapel has 522 stops.


The pitch produced by an organ pipe is a function of its length. All else equal, longer pipes produce lower-pitched notes, and shorter pipes are higher in pitch. An organ stop utilizes a set (rank) of pipes of graduated lengths to produce the range of notes needed. Stops with pipes tuned to sound the pitch normally associated with the keys (i.e. the pitch of the same keys on a piano) are called "unison stops". Other stops use pipework that is longer or shorter than that of unison ranks to speak at a fixed interval above or below unison pitch ("octave pitch" or "mutation pitch").


The pitch of a rank of pipes is denoted by a number on the stop knob. A stop which speaks at unison pitch, or "native pitch", is known as an 8′ (pronounced "eight-foot") stop. This nomenclature refers to the approximate length of the longest pipe in a rank of open pipes. In a rank of stopped pipes, the lowest pipe is about 4 feet long, but because it sounds at unison pitch, it is also known as an 8′ stop.



Octaves


The octave sounded by a given pipe is inversely proportional to its length ("half the length = double the pitch"), meaning that a 4′ stop speaks exactly one octave higher than an 8′ stop. Likewise, a 2′ stop speaks one octave higher than a 4′ stop. Conversely, a 16′ stop speaks one octave below an 8' stop; and a 32′ stop speaks one octave below a 16′ stop. Octave pitch lengths used in actual organs include 64′, 32′, 16′, 8′, 4′, 2′, 1′, and ​12′.


Example:


Organ keyboard unision pitch layout.png


Mutations and resultants


Ranks that do not speak at the unison or some octave of the unison pitch are called mutation stops, or sometimes "aliquots". They are rarely used on their own; rather, they are combined with unison stops to create different tone colors. A typical and distinctive sound of the organ is the cornet, composed of a flute and ranks making up its first four overtones, sounding 8′, 4′, ​2 23′ (labeled 3′ on some German and Swedish organs), 2′, and ​1 35′ (or ​1 12′ on some German organs).


The sounding length of a mutation stop gives the answer as to what pitch the rank sounds. For example, a stop labeled ​2 23′ (or one-third of 8′) has three times the frequency; i.e, the interval of a twelfth above unison pitch. This third harmonic (G) (twelfth, quint, qvinta, rorkvint, or nazard [nasard]) is the most-common pitch, followed by the fifth harmonic (E) (tierce [terz or ters on some organs]) (​1 35′) and sixth (G) (larigot, nasat) (​1 13′), with rarer examples from higher in the series, such as the "septième" or "septima" (​1 17′) and "none" (​89′).


Mutations usually sound at pitches in the harmonic series of the fundamental, and except when derived from unified ranks, are always tuned pure. Some organs contain mutations that are overtones of 16' or 32' to create difference tones, e.g., quint-bass ​10 23′. Such "helper ranks" that sound at the fifth just above or fourth below the fundamental (e.g., Bourdon 16′), can create the impression of a stop an octave lower than the fundamental (e.g., Bourdon 32′), saving the space and money otherwise needed for larger bass pipes; such an effect is termed a resultant.


This is a list of some mutation stops.















































































Interval
Length of

pipe/feet


Sounding

note when
C4 is played


Name
3
6 2/5'
E4
(Ped.) Gross Tierce
5
5 2/3'
G4
Quint
10
3 1/5'
E5
Gross Tierce, (Ped.) Tierce
12
2 2/3'
G5
Nazard, Twelfth
17
1 3/5'
E6
Tierce
19
1 1/3'
G6
Larigot
21
1 1/7'
B6
Septième
23
8/9'
D7
None
27
8/13'
A7
Tredezime
30
4/9'
D8
Mollterz
40
1/6'
G9
Quadragesima


Mixtures


Certain stops called mixtures contain multiple ranks of pipes sounding at consecutive octaves and fifths (and sometimes major thirds) above unison pitch. The number of ranks in a mixture is denoted by a Roman numeral on the stop knob; for example, a stop labeled "Mixture V" would contain five pipes for every note. So, for every key pressed, five different pipes sound (all controlled by the same stop).



Nomenclature


Pipe ranks have particular names, which depend on a number of factors ranging from the physical and tone attributes of the pipes in that rank, to the country and era in which the organ was manufactured, to the pipes' physical location within the organ. Each stop knob is labeled with the name of the rank it controls. In general, that label gives the organist two vital pieces of information about the rank of pipes in question:



  • Which octave of pitches the rank is natively tuned to

  • Which tone quality the rank possesses (principal, trumpet, flute, etc.)


This is an example of a pipe organ stoplist, showing both common stop names and conventional formatting. Within each division, flues are listed before reeds, then low to high pitch, then louder to softer stops within a pitch level. Separate celeste stops are next to their corresponding normally-tuned stops. Reed stops are often labeled in red on stop knobs or tabs.














Classifications of stops



Organ pipes fall into five broad categories:



  • Principal or Diapason

    Audio example
    Principal stops are non-imitative; that is, their sound does not attempt to imitate that of a particular instrument. The Principal sound is the most characteristic sound of the pipe organ; it is the sound which comes to mind in the context of traditional church music (such as hymns). While spellings and names vary by language and era, here are some common examples:



    • Principal (or Diapason, Open Diapason, Prinzipal, Montre)

    • Octave (or Prestant)

    • Super Octave (or Fifteenth, Doublette)

    • Quint (or Twelfth; sometimes in the Flute category)

    • Mixture (or Fourniture, Plein Jeu, Cymbale, Scharf; followed by a Roman numeral indicating the number of pipes that play simultaneously for a single note; example: Mixture III, or Fourniture IV–VI)




  • Flute

    Audio example
    Flute stops attempt to imitate (to one degree or another) the sound of flute-class woodwind instruments, such as the transverse flute and piccolo. Common examples:



    • Flute (or Flûte, Flöte)


    • Gedackt (or Gedeckt)


    • Bourdon (or Bordun)

    • Subbass (or Soubasse)

    • Stopped Diapason (or Stopped Flute) — despite its name, the Stopped Diapason is a flute-class stop


    • Flûte Harmonique (or Harmonic Flute, Flûte Octaviante)

    • Concert Flute (or Flauto Traverso)

    • Piccolo


    • Rohrflöte (or Chimney Flute, Flûte à Cheminée)


    • Nachthorn (or Cor de Nuit)

    • Quintaton (or Quintadena)

    • Nazard (or Nasard, Nasat)


    • Tierce (or Terz)

    • Larigot




  • String

    Audio example
    String stops attempt to imitate (to one degree or another) the sound of stringed instruments, such as the violin and cello. Common examples:



    • Gamba (or Viola da Gamba, Viole de Gambe)

    • Voix Céleste

    • Violin (or Viola, Viole d'Orchestre)

    • Violoncello

    • Violone




  • Reed

    Audio example
    Reed stops attempt to imitate (to one degree or another) the sound of brass instruments such as the trumpet and tuba, reed instruments such as the clarinet and oboe, and even the human voice. Common examples:



    • Trumpet (or Trompete, Trompette, Clarion, Trompette en Chamade)


    • Posaune (or Trombone)

    • Oboe (or Hautbois)


    • Fagotto (or Basson)

    • Clarinet

    • Tuba


    • Cromorne (or Krummhorn)

    • Bombarde

    • Vox Humana (or Voix Humaine)

    • Dulzian

    • Cornopean

    • Ophicleide




  • Hybrid

    Audio example of Gemshorn (flute + string)
    Hybrid stops contain one rank of pipes which attempts to combine the tone qualities of two other classifications of stops, such as Principal + String, String + Flute, or Principal + Flute. Common examples:



  • Combination of String + Principal:

    • Geigen Principal (or Violin Diapason)

    • Salicional

    • Dulciana



  • Combination of String + Flute

    • Gemshorn

    • Spitz Flöte

    • Erzähler




Percussion stops (often referred to as "toy counters" or "toy stops"), unlike other organ stops, are not aerophones, but actual embedded percussion instruments (although they may still be actuated by the wind supplies of an organ). Both tuned and untuned percussion stops exist (for instance, marimba and snare drum, respectively). They are commonly designed to imitate orchestral or band instruments, or to imitate non-musical sounds (for instance, thunder), or to produce unique sounds (for instance, zimbelstern). Percussion stops are particularly common in theatre organs, which were generally made to accompany silent films.



Notable organ stops



  • The loudest organ stop in the world is the Grand Ophicleide located in the Right Pedal division of the Boardwalk Hall Auditorium Organ. It stands on 100” wind pressure. A former organ curator warned the stagehands when the Grand Ophicleide was going to be used, because of the volume.

  • The mixture stop with the largest numbers of pipes, called Ple, can be found in Santanyí (Majorca), Spain. It has 22 ranks in the left hand and 25 in the right.[4][5]

  • There are only two true and complete (acoustic, non-digital, going down to the sub-sub-contra-C) 64′ stops in the world: the Contra-Trombone 64′ in the Sydney Town Hall Grand Organ (click here for a sound sample), and the Diaphone-Dulzian 64′ in the Boardwalk Hall Auditorium Organ (click here for a sound sample). The lowest note of these stops has a frequency of 8 Hz. Because of the limitations of most loudspeakers and the limitations of human hearing, the listener will not be able to hear the lowest frequencies in the sample, but may "feel" them and hear the harmonics above them.

  • Many large organs have a 64′ stop in their stoplist, but nearly all of these are either digital, acoustic imitations (32′ combined with a ​21 13′ extension creating a 64′ resultant impression), upper pipes in the octave, or else a sound sample of a higher-pitched stop electronically altered to sound one or more octaves lower. The Boardwalk Hall Auditorium Organ is capable of creating a resultant 128′ stop by combining its 64′ and ​42 23′ stops.



References





  1. ^ James Dalton, "Iberian organ music before 1700," in The Cambridge Companion to the Organ, ed. Nicholas Thistlethwaite and Geoffrey Webber (Cambridge University Press, 1998), p. 165.


  2. ^ John R. Shannon, Understanding the Pipe Organ, 2009, p. 83.


  3. ^ John R. Shannon, Understanding the Pipe Organ, 2009, Chapter 6.


  4. ^ Grenzing, Gerhard (1993). "Jordi Bosch—The Unknown Master" (PDF). ISO Yearbook: 114–116, 143..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  5. ^ Frankel, Stuart. "Notes about Historical Registration on the Santanyí Organ". Sonus Paradisi.




Further reading



  • Stevens Irwin, Dictionary of Pipe Organ Stops.

  • George Ashdown Audsley, Organ Stops and Their Artistic Registration.



External links


  • Edward L. Stauff, Encyclopedia of Organ Stops, retrieved from original 01/03/2017.








這個網誌中的熱門文章

12.7 cm/40 Type 89 naval gun

Rikitea

University of Vienna