Savanna









Typical tropical savanna in Northern Australia demonstrating the high tree density and regular spacing characteristic of many savannas


A savanna or savannah is a mixed woodland grassland ecosystem characterised by the trees being sufficiently widely spaced so that the canopy does not close. The open canopy allows sufficient light to reach the ground to support an unbroken herbaceous layer consisting primarily of grasses.[1][2][3]


Savannas maintain an open canopy despite a high tree density.[4] It is often believed that savannas feature widely spaced, scattered trees. However, in many savannas, tree densities are higher and trees are more regularly spaced than in forests.[5][6][7][8] The South American savanna types cerrado sensu stricto and cerrado dense typically have densities of trees similar to or higher than that found in South American tropical forests,[5][7][8] with savanna ranging from 800–3300 trees per hectare (trees/ha) and adjacent forests with 800–2000 trees/ha. Similarly Guinean savanna has 129 trees/ha, compared to 103 for riparian forest,[6] while Eastern Australian sclerophyll forests have average tree densities of approximately 100 per hectare, comparable to savannas in the same region.[9]


Savannas are also characterised by seasonal water availability, with the majority of rainfall confined to one season; they are associated with several types of biomes, and are frequently in a transitional zone between forest and desert or grassland. Savanna covers approximately 20% of the Earth's land area.[10]




Contents






  • 1 Etymology


  • 2 Distribution


  • 3 Threats


    • 3.1 Changes in fire management


    • 3.2 Grazing and browsing animals


    • 3.3 Tree clearing


    • 3.4 Exotic plant species


    • 3.5 Climate change




  • 4 Savanna ecoregions


  • 5 See also


  • 6 References


  • 7 External links




Etymology


The word originally entered English in 1555[11] as the Latin Zauana,[13] equivalent in the orthography of the times to zavana (see history of V). Peter Martyr reported it as the local name for the plain around Comagre, the court of the cacique Carlos in present-day Panama. The accounts are inexact,[15] but this is usually placed in present-day Madugandí[16] or at points on the nearby Guna Yala coast opposite Ustupo[17] or on Point Mosquitos.[18] These areas are now either given over to modern cropland or jungle.[19]


Distribution





Tarangire National Park in Tanzania, East Africa


Many grassy landscapes and mixed communities of trees, shrubs, and grasses were described as savanna before the middle of the 19th century, when the concept of a tropical savanna climate became established. The Köppen climate classification system was strongly influenced by effects of temperature and precipitation upon tree growth, and his oversimplified assumptions resulted in a tropical savanna classification concept which resulted in it being considered as a "climatic climax" formation. The common usage meaning to describe vegetation now conflicts with a simplified yet widespread climatic concept meaning. The divergence has sometimes caused areas such as extensive savannas north and south of the Congo and Amazon Rivers to be excluded from mapped savanna categories.[20]


"Barrens" has been used almost interchangeably with savanna in different parts of North America. Sometimes midwestern savanna were described as "grassland with trees". Different authors have defined the lower limits of savanna tree coverage as 5–10% and upper limits range as 25–80% of an area.[21]


Two factors common to all savanna environments are rainfall variations from year to year, and dry season wildfires.[citation needed] In the Americas, e.g. in Belize, Central America, savanna vegetation is similar from Mexico to South America and to the Caribbean.[22]


Over many large tropical areas, the dominant biome (forest, savanna or grassland) can not be predicted only by the climate, as historical events plays also a key role, for example, fire activity.[23] In some areas, indeed, it is possible the occurrence of multiple stable biomes.[24]


Threats


Changes in fire management


Savannas are subject to regular wildfires and the ecosystem appears to be the result of human use of fire. For example, Native Americans created the Pre-Columbian savannas of North America by periodically burning where fire-resistant plants were the dominant species.[25]Pine barrens in scattered locations from New Jersey to coastal New England are remnants of these savannas. Aboriginal burning appears to have been responsible for the widespread occurrence of savanna in tropical Australia and New Guinea,[26] and savannas in India are a result of human fire use.[27] The maquis shrub savannas of the Mediterranean region were likewise created and maintained by anthropogenic fire.[28]




Prescribed burn; Wisconsin bur oak savanna


These fires are usually confined to the herbaceous layer and do little long term damage to mature trees. However, these fires either kill or suppress tree seedlings, thus preventing the establishment of a continuous tree canopy which would prevent further grass growth. Prior to European settlement aboriginal land use practices, including fire, influenced vegetation[29] and may have maintained and modified savanna flora.[3][26] It has been suggested by many authors[29][30] that aboriginal burning created a structurally more open savanna landscape. Aboriginal burning certainly created a habitat mosaic that probably increased biodiversity and changed the structure of woodlands and geographic range of numerous woodland species.[26][29] It has been suggested by many authors[30][31] that with the removal or alteration of traditional burning regimes many savannas are being replaced by forest and shrub thickets with little herbaceous layer.


The consumption of herbage by introduced grazers in savanna woodlands has led to a reduction in the amount of fuel available for burning and resulted in fewer and cooler fires.[32] The introduction of exotic pasture legumes has also led to a reduction in the need to burn to produce a flush of green growth because legumes retain high nutrient levels throughout the year, and because fires can have a negative impact on legume populations which causes a reluctance to burn.[33]


Grazing and browsing animals





Oak savanna, United States


The closed forest types such as broadleaf forests and rainforests are usually not grazed owing to the closed structure precluding grass growth, and hence offering little opportunity for grazing.[34] In contrast the open structure of savannas allows the growth of a herbaceous layer and are commonly used for grazing domestic livestock.[35] As a result, much of the world's savannas have undergone change as a result of grazing by sheep, goats and cattle, ranging from changes in pasture composition to woody weed encroachment.[36]


The removal of grass by grazing affects the woody plant component of woodland systems in two major ways. Grasses compete with woody plants for water in the topsoil and removal by grazing reduces this competitive effect, potentially boosting tree growth.[37] In addition to this effect, the removal of fuel reduces both the intensity and the frequency of fires which may control woody plant species.[38] Grazing animals can have a more direct effect on woody plants by the browsing of palatable woody species. There is evidence that unpalatable woody plants have increased under grazing in savannas.[39] Grazing also promotes the spread of weeds in savannas by the removal or reduction of the plants which would normally compete with potential weeds and hinder establishment.[29] In addition to this, cattle and horses are implicated in the spread of the seeds of weed species such as Prickly Acacia (Acacia nilotica) and Stylo (Stylosanthes spp.).[32] Alterations in savanna species composition brought about by grazing can alter ecosystem function, and are exacerbated by overgrazing and poor land management practices.


Introduced grazing animals can also affect soil condition through physical compaction and break-up of the soil caused by the hooves of animals and through the erosion effects caused by the removal of protective plant cover. Such effects are most likely to occur on land subjected to repeated and heavy grazing.[40] The effects of overstocking are often worst on soils of low fertility and in low rainfall areas below 500 mm, as most soil nutrients in these areas tend to be concentrated in the surface so any movement of soils can lead to severe degradation. Alteration in soil structure and nutrient levels affects the establishment, growth and survival of plant species and in turn can lead to a change in woodland structure and composition.


Tree clearing


Large areas of Australian and South American savannas have been cleared of trees, and this clearing is continuing today. For example, until recently 480,000 ha of savanna were cleared annually in Australia alone primarily to improve pasture production.[29] Substantial savanna areas have been cleared of woody vegetation and much of the area that remains today is vegetation that has been disturbed by either clearing or thinning at some point in the past.


Clearing is carried out by the grazing industry in an attempt to increase the quality and quantity of feed available for stock and to improve the management of livestock. The removal of trees from savanna land removes the competition for water from the grasses present, and can lead to a two to fourfold increase in pasture production, as well as improving the quality of the feed available.[41] Since stock carrying capacity is strongly correlated with herbage yield, there can be major financial benefits from the removal of trees,[42] such as assisting with grazing management: regions of dense tree and shrub cover harbors predators, leading to increased stock losses, for example,[43] while woody plant cover hinders mustering in both sheep and cattle areas.[44]


A number of techniques have been employed to clear or kill woody plants in savannas. Early pastoralists used felling and girdling, the removal of a ring of bark and sapwood, as a means of clearing land.[45] In the 1950s arboricides suitable for stem injection were developed. War-surplus heavy machinery was made available, and these were used for either pushing timber, or for pulling using a chain and ball strung between two machines. These two new methods of timber control, along with the introduction and widespread adoption of several new pasture grasses and legumes promoted a resurgence in tree clearing. The 1980s also saw the release of soil-applied arboricides, notably tebuthiuron, that could be utilised without cutting and injecting each individual tree.


In many ways "artificial" clearing, particularly pulling, mimics the effects of fire and, in savannas adapted to regeneration after fire as most Queensland savannas are, there is a similar response to that after fire.[46] Tree clearing in many savanna communities, although causing a dramatic reduction in basal area and canopy cover, often leaves a high percentage of woody plants alive either as seedlings too small to be affected or as plants capable of re-sprouting from lignotubers and broken stumps. A population of woody plants equal to half or more of the original number often remains following pulling of eucalypt communities, even if all the trees over 5 metres are uprooted completely.


Exotic plant species




Acacia savanna, Taita Hills Wildlife Sanctuary, Kenya.


A number of exotic plants species have been introduced to the savannas around the world. Amongst the woody plant species are serious environmental weeds such as Prickly Acacia (Acacia nilotica), Rubbervine (Cryptostegia grandiflora), Mesquite (Prosopis spp.), Lantana (Lantana camara and L. montevidensis) and Prickly Pear (Opuntia spp.) A range of herbaceous species have also been introduced to these woodlands, either deliberately or accidentally including Rhodes grass and other Chloris species, Buffel grass (Cenchrus ciliaris), Giant rat's tail grass (Sporobolus pyramidalis) parthenium (Parthenium hysterophorus) and stylos (Stylosanthes spp.) and other legumes. These introductions have the potential to significantly alter the structure and composition of savannas worldwide, and have already done so in many areas through a number of processes including altering the fire regime, increasing grazing pressure, competing with native vegetation and occupying previously vacant ecological niches.[46][47]
Other plant species include: white sage, spotted cactus, cotton seed, rosemary.


Climate change


Human induced climate change resulting from the greenhouse effect may result in an alteration of the structure and function of savannas. Some authors[48] have suggested that savannas and grasslands may become even more susceptible to woody plant encroachment as a result of greenhouse induced climate change. However, a recent case described a savanna increasing its range at the expense of forest in response to climate variation, and potential exists for similar rapid, dramatic shifts in vegetation distribution as a result of global climate change, particularly at ecotones such as savannas so often represent.[49]


Savanna ecoregions




Mediterranean savanna in Alentejo region, Portugal


Savanna ecoregions are of several different types:




  • Tropical and subtropical savannas are classified with tropical and subtropical grasslands and shrublands as the tropical and subtropical grasslands, savannas, and shrublands biome. The savannas of Africa, including the Serengeti, famous for its wildlife, are typical of this type. The Brazilian savanna (Cerrado) is also included in this category, known for its exotic and varied flora.


  • Temperate savannas are mid-latitude savannas with wetter summers and drier winters. They are classified with temperate savannas and shrublands as the temperate grasslands, savannas, and shrublands biome, that for example cover much of the Great Plains of the United States. (See areas such as the Central forest-grasslands transition.)


  • Mediterranean savannas are mid-latitude savannas in Mediterranean climate regions, with mild, rainy winters and hot, dry summers, part of the Mediterranean forests, woodlands, and scrub biome. The oak tree savannas of California, part of the California chaparral and woodlands ecoregion, fall into this category.


  • Flooded savannas are savannas that are flooded seasonally or year-round. They are classified with flooded savannas as the flooded grasslands and savannas biome, which occurs mostly in the tropics and subtropics.


  • Montane savannas are mid- to high-altitude savannas, located in a few spots around the world's high mountain regions, part of the montane grasslands and shrublands biome. The Bogotá savanna, located at an average altitude of 2,550 metres (8,370 ft) on the Altiplano Cundiboyacense, Eastern Ranges of the Andes, is an example of a montane savanna.[50][51] The savannas of the Angolan Scarp savanna and woodlands ecoregion are a lower altitude example, up to 1,000 metres (3,300 ft).[52]


See also




  • Pampas

  • Pasture

  • Prairie

  • Rangeland

  • Steppe

  • Veld



References





  1. ^ Anderson, Roger A., Fralish, James S. and Baskin, Jerry M. editors.1999. Savannas, Barrens, and Rock Outcrop Plant Communities of North America. Cambridge University Press.


  2. ^ McPherson, G. R. (1997). Ecology and management of North American Savannas. Tucson, AZ: University of Arizona Press.


  3. ^ ab Werner, Patricia A.; B. H. Walker; P. A Stott (1991). "Introduction". In Patricia A. Werner. Savanna Ecology and Management: Australian Perspectives and Intercontinental Comparisons. Oxford: Blackwell Publishing. ISBN 978-0-632-03199-3..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  4. ^ Alexandro Solórzano, Jeanine Maria Felfili 2008”Comparative analysis of the international terminaoolgy for cerrado” IX Symposio Nacional Cerrado 13 a 17 de outubro de 2008 Parlamundi Barsilia, DF


  5. ^ ab Manoel Cláudio da Silva Jánior, Christopher William Fagg, Maria Cristina Felfili, Paulo Ernane Nogueira, Alba Valéria Rezende, and Jeanine Maria Felfili 2006 “Chapter 4. Phytogeography of Cerrado Sensu Stricto and Land System Zoning in Central Brazil” in “Neotropical Savannas and Seasonally Dry Forests: Plant Diversity, Biogeography, and Conservation” R. Toby Pennington, James A. Ratter (eds) 2006 CRC Press


  6. ^ ab Abdullahi Jibrin 2013 “A Study of Variation in Physiognomic Characteristics of Guinea Savanna Vegetation” Environment and Natural Resources Research 3:2


  7. ^ ab Erika L. Geiger, Sybil G. Gotsch, Gabriel Damasco, M. Haridasan, Augusto C. Franco & William A. Hoffmann 2011 “Distinct roles of savanna and forest tree species in regeneration under fire suppression in a Brazilian savanna” Journal of Vegetation Science 22


  8. ^ ab Scholz, Fabian G.; Bucci, Sandra J.; Goldstein, Guillermo; Meinzer, Frederick C.; Franco, Augusto C.; Salazar, Ana. 2008 “Plant- and stand-level variation in biophysical and physiological traits along tree density gradients in the Cerrado”, Brazilian Journal of Plant Physiology


  9. ^ Tait, L 2010, Structure and dynamics of grazed woodlands in North-eastern Australia, Master of Applied Science Thesis, Central Queensland University, Faculty of Science, Engineering and Health, Rockhampton.


  10. ^ Sankaran, Mahesh; Hanan, Niall P.; Scholes, Robert J.; Ratnam, Jayashree; Augustine, David J.; Cade, Brian S.; Gignoux, Jacques; Higgins, Steven I.; Le Roux, Xavier (December 2005). "Determinants of woody cover in African savannas". Nature. 438 (7069): 846–849. doi:10.1038/nature04070. ISSN 0028-0836.


  11. ^ Oxford English Dictionary, 3rd ed. "savannah", n. Oxford University Press (Oxford), 2012.


  12. ^ ab D'Anghiera, Peter Martyr. De Orbe Novo Decades. Cum Ejusdem Legatione Babylonica. [The Decades of the New World. With the Babylonian Legation.] Arnao Guillén de Brocar (Alcala), 1516 (in Latin). Trans. Richard Eden as The decades of the newe worlde or west India conteynyng the nauigations and conquestes of the Spanyardes with the particular description of the moste ryche and large landes and Ilands lately founde in the west Ocean perteynyng to the inheritaunce of the kinges of Spayne, Book III, §3. William Powell (London), 1555.


  13. ^ Richard Eden: "The palace of this Comogrus, is ſituate at the foote of a ſtiepe hyll well cultured. Hauynge towarde the ſouthe a playne of twelue leages in breadth and veary frutefull. This playne, they caule Zauana."[12]


  14. ^ Eden (1555), Book III, §6.


  15. ^ The account of Peter Martyr itself differs in places, variously placing Comagre 25 leagues west of and accessible by ship from Dariena[14] or 70 leagues (roughly 290 kilometers or 180 miles) west of Dariena and beside a river flowing into the southern ocean.[12]


  16. ^ Bancroft, Hubert H. (1882). "History of Central America. 1501–1530". San Francisco: A.L. Bancroft & Co. p. LXXIV.


  17. ^ Bancroft (1882), p. 362.


  18. ^ Bancroft (1882), p. 347.


  19. ^ NASA. "[earthobservatory.nasa.gov/Experiments/ICE/panama/Images/igbp_panama2000289_lg.gif Land Cover Classification]" from Earth Observatory. The Image Composite Explorer. Exercise 4: Vegetation Vital Signs. Accessed 1 August 2014.


  20. ^ David R. Harris, ed. (1980). Human Ecology in Savanna Environments. London: Academic Press. pp. 3, 5–9, 12, 271–278, 297–298. ISBN 0-12-326550-9.


  21. ^ Roger C. Anderson; James S. Fralish; Jerry M. Baskin, eds. (1999). Savannas, Barrens, and Rock Outcrop Plant Communities of North America. Cambridge University Press. pp. 2–3. ISBN 0-521-57322-X.


  22. ^ David L. Lentz, ed. (2000). Imperfect balance: landscape transformations in the Precolumbian Americas. New York City: Columbia University Press. pp. 73–74. ISBN 0-231-11157-6.


  23. ^ Moncrieff, G. R., Scheiter, S., Langan, L., Trabucco, A., Higgins, S. I. (2016). The future distribution of the savannah biome: model-based and biogeographic contingency, Philos. T. R. Soc. B, 371, 2015.0311, 2016. link.


  24. ^ Staver, A.C., Archibald, S., Levin, S.A. (2011). The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232. link.


  25. ^ "Use of Fire by Native Americans". The Southern Forest Resource Assessment Summary Report. Southern Research Station, USDA Forest Service. Retrieved 2008-07-21.


  26. ^ abc Flannery, Timothy Fridtjof (1994). The Future Eaters: An Ecological History of the Australasian Lands and People. Frenchs Forest, New South Wales: Reed New Holland. ISBN 978-0-8076-1403-7.


  27. ^ Saha, S. (2003). "Patterns in woody species diversity, richness and partitioning of diversity in forest communities of tropical deciduous forest biomes". Ecography. 26 (1): 80–86. doi:10.1034/j.1600-0587.2003.03411.x.


  28. ^ Pyne, Stephen J. (1997). Vestal Fire: An Environmental History, Told through Fire, of Europe and Europe's Encounter with the World. Seattle: University of Washington Press. ISBN 0-295-97596-2.


  29. ^ abcde Wilson, B., S. Boulter, et al. (2000). Queensland's resources. Native Vegetation Management in Queensland. S. L. Boulter, B. A. Wilson, J. Westrupet eds. Brisbane, Department of Natural Resources
    ISBN 0-7345-1701-7.



  30. ^ ab Lunt, I. D.; N. Jones (2006). "Effects of European colonisation on indigenous ecosystems: post-settlement changes in tree stand structures in EucalyptusCallitris woodlands in central New South Wales, Australia". Journal of Biogeography. 33 (6): 1102–1115. doi:10.1111/j.1365-2699.2006.01484.x.


  31. ^ Archer S, (1994.) "Woody plant encroachment into southwestern grasslands and savannas: Rates, patterns and proximate causes." pp. 13–68 in Vavra, Laycock and Pieper (eds.) Ecological Implications of Livestock Herbivory in the West. Society For Range Management, Denver
    ISBN 1-884930-00-X.



  32. ^ ab Pressland, A. J., J. R. Mills, et al. (1988). Landscape degradation in native pasture. Native pastures in Queensland their resources and management. W. H. Burrows, J. C. Scanlan and M. T. Rutherford. Queensland, Queensland Government Press
    ISBN 0-7242-2443-2.



  33. ^ Dyer, R., A. Craig, et al. (1997). Fire in northern pastoral lands. Fire in the management of northern Australian pastoral lands. T. C. Grice and S. M. Slatter. St. Lucia, Australia, Tropical Grassland Society of Australia
    ISBN 0-9590948-9-X.



  34. ^ Lodge, G. M. and R. D. B. Whalley (1984). Temperate rangelands. Management of Australia’s Rangelands. G. N. Harrington and A. D. Wilson. Melbourne, CSIRO Publishing.


  35. ^ Mott, J. J., Groves, R.H. (1994). Natural and derived grasslands. Australian Vegetation. R. H. Groves. Cambridge, Cambridge University Press.


  36. ^ Winter, W. H. (1991). "Australia's northern savannas: a time for change in management philosophy". In Patricia A. Werner. Savanna Ecology and Management: Australian Perspectives and Intercontinental Comparisons. Oxford: Blackwell Publishing. pp. 181–186. ISBN 978-0-632-03199-3.


  37. ^ Burrows, W. H., J. C. Scanlan, et al. (1988). Plant ecological relations in open forests, woodlands and shrublands. Native pastures in Queensland their resources and management. W. H. Burrows, J. C. Scanlan and M. T. Rutherford eds. Brisbane, Department of Primary Industries
    ISBN 0-7242-2443-2.



  38. ^ Smith, G., A. Franks, et al. (2000). Impacts of domestic grazing within remnant vegetation. Native Vegetation Management in Queensland. S. L. Boulter, B. A. Wilson, J. Westrupet al. Brisbane, Department of Natural Resources
    ISBN 0-7345-1701-7.



  39. ^ Florence, R. G. (1996). Ecology and silviculture of eucalypt forests. Collingwood, CSIRO Publishing
    ISBN 0-643-10252-3.



  40. ^ Foran, B. D. (1984). Central arid woodlands. Management of Australia’s Rangelands. G. N. Harrington and A. D. Wilson. Melbourne, CSIRO Publishing
    ISBN 0-643-03615-6.



  41. ^ Scanlan, J. and C. Chilcott (2000). Management and production aspects. Native Vegetation Management in Queensland. S. L. Boulter, B. A. Wilson, J. Westrupet al. Brisbane, Department of Natural Resources.


  42. ^ Harrington, G. N., M. H. Friedel, et al. (1984). Vegetation ecology and management. Management of Australia's Rangelands. G. N. Harrington and A. D. Wilson. Melbourne, CSIRO Publishing
    ISBN 0-643-03615-6.



  43. ^ Harrington, G. N., D. M. D. Mills, et al. (1984). Semi-arid woodlands. Management of Australia's Rangelands. G. N. Harrington and A. D. Wilson. Melbourne, CSIRO Publishing
    ISBN 0-643-03615-6.



  44. ^ Harrington, G. N., D. M. D. Mills, et al. (1984). Management of Rangeland Ecosystems. Management of Australia's Rangelands. G. N. Harrington and A. D. Wilson. Melbourne, CSIRO Publishing
    ISBN 0-643-03615-6.



  45. ^ Partridge, I. (1999). Managing grazing in northern Australia. Brisbane, Department of Primary Industries
    ISBN 0-7345-0035-1.



  46. ^ ab Scanlan, J. C. (1988). Managing tree and shrub populations. Native pastures in Queensland their resources and management. W. H. Burrows, J. C. Scanlan and M. T. Rutherford. Queensland, Queensland Government Press
    ISBN 0-7242-2443-2.



  47. ^ Tothill, J. C. and C. Gillies (1992). The pasture lands of northern Australia. Brisbane, Tropical Grassland Society of Australia
    ISBN 0-9590948-4-9.



  48. ^ Archer, S. (1991). "Development and stability of grass/woody mosaics in a subtropical savanna parkland, Texas, USA". In Patricia A. Werner. Savanna Ecology and Management: Australian Perspectives and Intercontinental Comparisons. Oxford: Blackwell Publishing. pp. 109–118. ISBN 978-0-632-03199-3.


  49. ^ Allen, C. D. & D. D. Breshears (1998). "Drought-induced shift of a forest–woodland ecotone: Rapid landscape response to climate variation". Proceedings of the National Academy of Sciences. 95 (25): 14839–14842. doi:10.1073/pnas.95.25.14839. PMC 24536. PMID 9843976.


  50. ^ Calvachi Zambrano, Byron (2002). "La biodiversidad bogotana" (PDF). Revista La Tadeo (in Spanish). Universidad Jorge Tadeo Lozano. 67: 89–98. Retrieved 2017-03-04.


  51. ^ Pérez Preciado, Alfonso (2000). La estructura ecológica principal de la Sabana de Bogotá (PDF) (in Spanish). Sociedad Geográfica de Colombia. pp. 1–37. Retrieved 2017-03-04.


  52. ^ Angolan Scarp savanna and woodlands



External links







  • The Savanna


  • Wikisource "Savanna". Encyclopædia Britannica (11th ed.). 1911.


  • Wikisource-logo.svg "Savannas". New International Encyclopedia. 1905.











這個網誌中的熱門文章

12.7 cm/40 Type 89 naval gun

Rikitea

University of Vienna